%0 Journal Article %A Zvi N. Roth %A Ehud Zohary %T Position and Identity Information Available in fMRI Patterns of Activity in Human Visual Cortex %D 2015 %R 10.1523/JNEUROSCI.0752-15.2015 %J The Journal of Neuroscience %P 11559-11571 %V 35 %N 33 %X Parietal cortex is often implicated in visual processing of actions. Action understanding is essentially abstract, specific to the type or goal of action, but greatly independent of variations in the perceived position of the action. If certain parietal regions are involved in action understanding, then we expect them to show these generalization and selectivity properties. However, additional functions of parietal cortex, such as self-action control, may impose other demands by requiring an accurate representation of the location of graspable objects. Therefore, the dimensions along which responses are modulated may indicate the functional role of specific parietal regions. Here, we studied the degree of position invariance and hand/object specificity during viewing of tool-grasping actions. To that end, we characterize the information available about location, hand, and tool identity in the patterns of fMRI activation in various cortical areas: early visual cortex, posterior intraparietal sulcus, anterior superior parietal lobule, and the ventral object-specific lateral occipital complex. Our results suggest a gradient within the human dorsal stream: along the posterior–anterior axis, position information is gradually lost, whereas hand and tool identity information is enhanced. This may reflect a gradual transformation of visual input from an initial retinotopic representation in early visual areas to an abstract, position-invariant representation of viewed action in anterior parietal cortex. SIGNIFICANCE STATEMENT Since the seminal study of Goodale and Milner (1992), there is general agreement that visual processing is largely divided between a ventral and dorsal stream specializing in object recognition and vision for action, respectively. Here, we address the specific representation of viewed actions. Specifically, we study the degree of position invariance and hand/object manipulation specificity in the human visual pathways, characterizing the information available in patterns of fMRI activation during viewing of object-grasping videos, which appeared in different retinal locations. We find converging evidence for a gradient within the dorsal stream: along the posterior–anterior axis, position information is gradually lost, whereas hand and action identity information is enhanced, leading to an abstract, position-invariant representation of viewed action in the anterior parietal cortex. %U https://www.jneurosci.org/content/jneuro/35/33/11559.full.pdf