PT - JOURNAL ARTICLE AU - Stefano Meletti AU - Anna Elisabetta Vaudano AU - Fabio Pizza AU - Andrea Ruggieri AU - Stefano Vandi AU - Alberto Teggi AU - Christian Franceschini AU - Francesca Benuzzi AU - Paolo Frigio Nichelli AU - Giuseppe Plazzi TI - The Brain Correlates of Laugh and Cataplexy in Childhood Narcolepsy AID - 10.1523/JNEUROSCI.0840-15.2015 DP - 2015 Aug 19 TA - The Journal of Neuroscience PG - 11583--11594 VI - 35 IP - 33 4099 - http://www.jneurosci.org/content/35/33/11583.short 4100 - http://www.jneurosci.org/content/35/33/11583.full SO - J. Neurosci.2015 Aug 19; 35 AB - The brain suprapontine mechanisms associated with human cataplexy have not been clarified. Animal data suggest that the amygdala and the ventromedial prefrontal cortex are key regions in promoting emotion-induced cataplectic attacks. Twenty-one drug-naive children/adolescent (13 males, mean age 11 years) with recent onset of narcolepsy type 1 (NT1) were studied with fMRI while viewing funny videos using a “naturalistic” paradigm. fMRI data were acquired synchronously with EEG, mylohyoid muscle activity, and the video of the patient's face. Whole-brain hemodynamic correlates of (1) a sign of fun and amusement (laughter) and of (2) cataplexy were analyzed and compared. Correlations analyses between these contrasts and disease-related variables and behavioral findings were performed. SIGNIFICANCE STATEMENT In this study we reported for the first time in humans the brain structures whose neural activity is specifically and consistently associated with emotion-induced cataplexy. To reach this goal drug-naive children and adolescents with recent onset narcolepsy type 1 were investigated. In narcolepsy caused by hypocretin/orexin deficiency, cataplexy is associated with a marked increase in neural activity in the amygdala, the nucleus accumbens, and the ventromedial prefrontal cortex, which represent suprapontine centers that physiologically process emotions and reward. These findings confirm recent data obtained in the hypocretin knock-out mice and suggest that the absence of hypothalamic hypocretin control on mesolimbic reward centers is crucial in determining cataplexy induced by emotions. Emotion-induced laughter occurred in 16 patients, and of these 10 showed cataplexy for a total of 77 events (mean duration = 4.4 s). Cataplexy was marked by brief losses of mylohyoid muscle tone and by the observation of episodes of facial hypotonia, jaw drop, and ptosis. During laughter (without cataplexy) an increased hemodynamic response occurred in a bilateral network involving the motor/premotor cortex and anterior cingulate gyrus. During cataplexy, suprapontine BOLD signal increase was present in the amygdala, frontal operculum–anterior insular cortex, ventromedial prefrontal cortex, and the nucleus accumbens; BOLD signal increases were also observed at locus ceruleus and in anteromedial pons. The comparison of cataplexy versus laugh episodes revealed the involvement of a corticolimbic network that processes reward and emotion encompassing the anterior insular cortex, the nucleus accumbens, and the amygdala.