RT Journal Article SR Electronic T1 Cortical Low-Frequency Power and Progressive Phase Synchrony Precede Successful Memory Encoding JF The Journal of Neuroscience JO J. Neurosci. FD Society for Neuroscience SP 13577 OP 13586 DO 10.1523/JNEUROSCI.0687-15.2015 VO 35 IS 40 A1 Rafi U. Haque A1 John H. Wittig, Jr. A1 Srikanth R. Damera A1 Sara K. Inati A1 Kareem A. Zaghloul YR 2015 UL http://www.jneurosci.org/content/35/40/13577.abstract AB Neural activity preceding an event can influence subsequent memory formation, yet the precise cortical dynamics underlying this activity and the associated cognitive states remain unknown. We investigate these questions here by examining intracranial EEG recordings as 28 participants with electrodes placed for seizure monitoring participated in a verbal paired-associates memory task. We found that, preceding successfully remembered word pairs, an orientation cue triggered a low-frequency 2–4 Hz phase reset in the right temporoparietal junction with concurrent increases in low-frequency power across cortical regions that included the prefrontal cortex and left temporal lobe. Regions that exhibited a significant increase in 2–4 Hz power were functionally bound together through progressive low-frequency 2–4 Hz phase synchrony. Our data suggest that the interaction between power and phase synchrony reflects the engagement of attentional networks that in large part determine the extent to which memories are successfully encoded.SIGNIFICANCE STATEMENT Here we investigate the spatiotemporal cortical dynamics that precede successful memory encoding. Using intracranial EEG, we observed significant changes in oscillatory power, intertrial phase consistency, and pairwise phase synchrony that predict successful encoding. Our data suggest that the interaction between power and phase synchrony reflects the engagement of attentional networks that in large part determine the extent to which memories are successfully encoded.