TY - JOUR T1 - Oscillatory Dynamics Underlying Perceptual Narrowing of Native Phoneme Mapping from 6 to 12 Months of Age JF - The Journal of Neuroscience JO - J. Neurosci. SP - 12095 LP - 12105 DO - 10.1523/JNEUROSCI.1162-16.2016 VL - 36 IS - 48 AU - Silvia Ortiz-Mantilla AU - Jarmo A. Hämäläinen AU - Teresa Realpe-Bonilla AU - April A. Benasich Y1 - 2016/11/30 UR - http://www.jneurosci.org/content/36/48/12095.abstract N2 - During the first months of life, human infants process phonemic elements from all languages similarly. However, by 12 months of age, as language-specific phonemic maps are established, infants respond preferentially to their native language. This process, known as perceptual narrowing, supports neural representation and thus efficient processing of the distinctive phonemes within the sound environment. Although oscillatory mechanisms underlying processing of native and non-native phonemic contrasts were recently delineated in 6-month-old infants, the maturational trajectory of these mechanisms remained unclear. A group of typically developing infants born into monolingual English families, were followed from 6 to 12 months and presented with English and Spanish syllable contrasts varying in voice-onset time. Brain responses were recorded with high-density electroencephalogram, and sources of event-related potential generators identified at right and left auditory cortices at 6 and 12 months and also at frontal cortex at 6 months. Time-frequency analyses conducted at source level found variations in both θ and γ ranges across age. Compared with 6-month-olds, 12-month-olds' responses to native phonemes showed smaller and faster phase synchronization and less spectral power in the θ range, and increases in left phase synchrony as well as induced high-γ activity in both frontal and left auditory sources. These results demonstrate that infants become more automatized and efficient in processing their native language as they approach 12 months of age via the interplay between θ and γ oscillations. We suggest that, while θ oscillations support syllable processing, γ oscillations underlie phonemic perceptual narrowing, progressively favoring mapping of native over non-native language across the first year of life.SIGNIFICANCE STATEMENT During early language acquisition, typically developing infants gradually construct phonemic maps of their native language in auditory cortex. It is well known that, by 12 months of age, human infants move from universal discrimination of most linguistic phonemic contrasts to phonemic expertise in their native language. This perceptual narrowing occurs at the expense of the ability to process non-native phonemes. However, the neural mechanisms underlying this process are still poorly understood. Here we demonstrate that perceptual narrowing is, at least in part, accomplished by decreasing power and phase coherence in the θ range while increasing activity in high-γ in left auditory cortex. Understanding the normative neural mechanisms that support early language acquisition is crucial to understanding and perhaps ameliorating developmental language disorders. ER -