TY - JOUR T1 - The Attraction Effect Modulates Reward Prediction Errors and Intertemporal Choices JF - The Journal of Neuroscience JO - J. Neurosci. SP - 371 LP - 382 DO - 10.1523/JNEUROSCI.2532-16.2016 VL - 37 IS - 2 AU - Sebastian Gluth AU - Jared M. Hotaling AU - Jörg Rieskamp Y1 - 2017/01/11 UR - http://www.jneurosci.org/content/37/2/371.abstract N2 - Classical economic theory contends that the utility of a choice option should be independent of other options. This view is challenged by the attraction effect, in which the relative preference between two options is altered by the addition of a third, asymmetrically dominated option. Here, we leveraged the attraction effect in the context of intertemporal choices to test whether both decisions and reward prediction errors (RPE) in the absence of choice violate the independence of irrelevant alternatives principle. We first demonstrate that intertemporal decision making is prone to the attraction effect in humans. In an independent group of participants, we then investigated how this affects the neural and behavioral valuation of outcomes using a novel intertemporal lottery task and fMRI. Participants' behavioral responses (i.e., satisfaction ratings) were modulated systematically by the attraction effect and this modulation was correlated across participants with the respective change of the RPE signal in the nucleus accumbens. Furthermore, we show that, because exponential and hyperbolic discounting models are unable to account for the attraction effect, recently proposed sequential sampling models might be more appropriate to describe intertemporal choices. Our findings demonstrate for the first time that the attraction effect modulates subjective valuation even in the absence of choice. The findings also challenge the prospect of using neuroscientific methods to measure utility in a context-free manner and have important implications for theories of reinforcement learning and delay discounting.SIGNIFICANCE STATEMENT Many theories of value-based decision making assume that people first assess the attractiveness of each option independently of each other and then pick the option with the highest subjective value. The attraction effect, however, shows that adding a new option to a choice set can change the relative value of the existing options, which is a violation of the independence principle. Using an intertemporal choice framework, we tested whether such violations also occur when the brain encodes the difference between expected and received rewards (i.e., the reward prediction error). Our results suggest that neither intertemporal choice nor valuation without choice adhere to the independence principle. ER -