RT Journal Article SR Electronic T1 A unique ‘angiotensin sensitive’ neuronal population coordinates neuroendocrine, cardiovascular and behavioral responses to stress JF The Journal of Neuroscience JO J. Neurosci. FD Society for Neuroscience SP 3674-16 DO 10.1523/JNEUROSCI.3674-16.2017 A1 Annette D. de Kloet A1 Lei Wang A1 Soledad Pitra A1 Helmut Hiller A1 Justin A. Smith A1 Yalun Tan A1 Dani Nguyen A1 Karlena M. Cahill A1 Colin Sumners A1 Javier E. Stern A1 Eric G. Krause YR 2017 UL http://www.jneurosci.org/content/early/2017/02/20/JNEUROSCI.3674-16.2017.abstract AB Stress elicits neuroendocrine, autonomic and behavioral responses that mitigate homeostatic imbalance and ensure survival; however, chronic engagement of such responses promotes psychological, cardiovascular and metabolic impairments. Over recent years, the renin-angiotensin system has emerged as a key mediator of stress responding and its related pathologies, but the neuronal circuits that orchestrate these interactions are not known. These studies combine the use of the Cre-recombinase/loxP system in mice with optogenetics to structurally and functionally characterize angiotensin type-1a receptor-containing neurons of the paraventricular nucleus of the hypothalamus, the goal being to determine the extent of their involvement in the regulation of stress responses. Initial studies utilize neuroanatomical techniques to reveal that angiotensin type-1a receptors are localized predominantly to the parvocellular neurosecretory neurons of the paraventricular nucleus of the hypothalamus. These neurons are almost exclusively glutamatergic and send dense projections to the exterior portion of the median eminence. Furthermore, these neurons largely express corticotrophin-releasing hormone or thyrotropin-releasing hormone and do not express arginine vasopressin or oxytocin. Functionally, optogenetic stimulation of these neurons promotes the activation of the hypothalamic pituitary-adrenal and -thyroid axes, as well as a rise in systolic blood pressure. When these neurons are optogenetically inhibited, the activity of these neuroendocrine axes are suppressed and anxiety-like behavior in the elevated plus maze is dampened. Collectively, these studies implicate this neuronal population in the integration and coordination of the physiological responses to stress and may therefore serve as a potential target for therapeutic intervention for stress-related pathology.SIGNIFICANCE STATEMENTChronic stress leads to an array of physiological responses that ultimately rouse psychological, cardiovascular and metabolic impairments. As a consequence, there is an urgent need for the development of novel therapeutic approaches to prevent or dampen deleterious aspects of ‘stress'. While the renin-angiotensin system has received some attention in this regard, the neural mechanism(s) by which this endocrine system may impact stress-related pathologies and consequently serve as a target for therapeutic intervention is not clear. The present studies provide substantial insight in this regard. That is, they reveal that a distinct population of angiotensin-sensitive neurons is integral to the coordination of stress responses. The implication is that this neuronal phenotype may serve as a target for stress-related disease.