RT Journal Article SR Electronic T1 Beta-Blocker Propranolol Modulates Decision Urgency During Sequential Information Gathering JF The Journal of Neuroscience JO J. Neurosci. FD Society for Neuroscience SP 7170 OP 7178 DO 10.1523/JNEUROSCI.0192-18.2018 VO 38 IS 32 A1 Tobias U. Hauser A1 Michael Moutoussis A1 Nina Purg A1 Peter Dayan A1 Raymond J. Dolan YR 2018 UL http://www.jneurosci.org/content/38/32/7170.abstract AB Arbitrating between timely choice and extended information gathering is critical for effective decision making. Aberrant information gathering behavior is thought to be a feature of psychiatric disorders such as schizophrenia and obsessive-compulsive disorder, but we know little about the underlying neurocognitive control mechanisms. In a double-blind, placebo-controlled drug study involving 60 healthy human subjects (30 female), we examined the effects of noradrenaline and dopamine antagonism on information gathering during performance of an information sampling task. We show that modulating noradrenaline function with 40 mg of the β-blocker propranolol leads to decreased information gathering behavior. Modulating dopamine function via a single dose of 400 mg of amisulpride revealed some effects that were intermediate between those of propranolol and placebo. Using a Bayesian computational model, we show that sampling behavior is best explained by inclusion of a nonlinear urgency signal that promotes commitment to an early decision. Noradrenaline blockade promotes the expression of this decision-related urgency signal during information gathering. We discuss the findings with respect to psychopathological conditions that are linked to aberrant information gathering.SIGNIFICANCE STATEMENT Knowing when to stop gathering information and commit to a choice option is nontrivial. This is an important element in arbitrating between information gain and energy conservation. In this double-blind, placebo-controlled drug study, we investigated the role of catecholamines noradrenaline and dopamine on sequential information gathering. We found that blockade of noradrenaline led to a decrease in information gathering. Dopamine blockade showed an intermediate, but nonsignificant, effect. Using a Bayesian computational model, we show that this noradrenaline effect is driven by increased decision urgency, a signal that reflects an escalating subjective cost of sampling. The observation that noradrenaline modulates decision urgency suggests new avenues for treating patients that show information gathering deficits.