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Supplement 
 
Mathematical Methods:  
 
Estimation of diffusion constants from hydrodynamic properties: We used the Stokes-
Einstein equation, D = kBT/6πηRH (where kB is the Boltzmann constant, T absolute 
temperature, η the viscosity of the medium, and RH the hydrodynamic radius) to estimate the 
diffusion coefficients D of GFP, tau, and the GFP-tau fusion proteins. The viscosity of the 
axonal cytosol was assumed to be 3.4 cP, 5 times larger than that of water at 37°C [Popov & 
Poo, 1992]. The hydrodynamic radius for GFP (RH = 2.4 nm, corresponding to D = 28 µm2/s) 
was calculated from the formula for globular proteins, RH/nm = 0.595 (MW/kDa)0.427 (MW = 
molecular weight), in agreement with experimental values (Luby-Phelps, 2000). The 
hydrodynamic radius of tau protein (RH =5.6 nm; corresponding to D = 12 µm2/s ) was taken 
from (Cleveland et al., 1977). This is larger than the value expected for globular proteins of 
equivalent mass because tau is a natively unfolded protein (Schweers et al., 1994). The 
empirical formula RH/nm = 0.221 N 0.57 (N= number of amino acids) for highly denatured 
proteins (Wilkins et al., 1999) predicts RH = 7.1 nm (corresponding to D = 9.4 µm2/s) for a 
protein of the same number of amino acids as tau (N = 441), indicating that tau protein is not 
completely unfolded. The same formula can be used to calculate an upper limit for the 
hydrodynamic radius of the GFP-tau fusion protein (N = 679), assuming a completely 
unfolded protein of the same number of amino acid residues: RH,max = 9.1 nm (corr. to Dmin = 
7.4 µm2/s). Considering that the GFP moiety of the fusion protein is compactly folded, and 
that the tau moiety also retains some residual structure, the true value is problably closer to 
RH,min = 5.6 nm (the value of tau protein alone) than to RH,max. This is consistent with the 
diffusion constant measured for GFP-tau (D = 11 µm2/s), which corresponds to RH =  6.1 nm. 
Alternatively, the combined RH of a fusion protein with two globular domains can be 
estimated from  

(M1+M2)Rtot
2 = M1R1

2 + M2R2
2 + M1M2 d

2/(M1+M2). 
Since the values for RH and MW of tau (5.6 nm, 48 kDa) are much larger than for GFP (2.4 
nm, 28 kDa), the presence of GFP in the fusion protein makes only a minor contribution to 
the combined RH (6.06 nm, +8%) 
 
Modelling of free diffusion and diffusion with binding to microtubules: Experimental 
values for the diffusion coefficients were determined by FRAP from the half time of recovery, 
t1/2, at the centre of an extended bleached region within the axon. To define the relation 
between t1/2 and D, the axon was modeled as a cylinder (tube of constant cross section) and 
the diffusion of tau was described by solving the one-dimensional diffusion equation for free 
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diffusion or by numerical integration of the reaction-diffusion equations for diffusion with 
binding to microtubules. 
 
Free diffusion: The one-dimensional diffusion equation 
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with initial conditions  
 
(2)  0)0,( ctxc ==   for x < � L/2 or  x > L/2         (outside the bleached zone) 

  0)0,( ==txc   for � L/2 <  x < L/2             (inside the bleached zone) 

is solved by using the well-known solution of (1) for initial conditions corresponding to a step 
function  (e.g. Segel, 1980). Using the notation 
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the solution of equation (1) with initial conditions (2) is given by 
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At the center of the bleached region ( x = 0 ) this equation simplifies to 
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which leads to  
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Diffusion with binding to microtubules: Equations (1) and (6) should apply to freely 
diffusing molecules like GFP and the 4KXGE-tau mutant. For wildtype tau and the 8R-tau 
mutant, reversible binding to MTs must be taken into account. Instead of a simple diffusion 
equation for a single species, two equations for the bound and for the detached molecules 
(concentrations cbound and cfree) are required to describe diffusional motion and MT binding 
kinetics. Assuming that the total concentration of tau (ctotal = cbound + cfree) is far below 
saturation of MTs everywhere in the axon, association and dissociation can both be 
described by (pseudo) first order rate equations (rate constants kon and koff), leading to: 
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The system of reaction-diffusion equations (7a, b) with initial conditions (2) does not have an 
analytical solution, but two limiting cases can be discussed easily. In the case  L �  0 (small 
bleached zone) the diffusion is "fast", relative to MT binding, and therefore the experiment 
yields information on MT binding. Conversely, in the case L �  ∞ the diffusion is "slow" 
compared to MT binding so that the experiment yields information on diffusion. Specifically, if 
L is sufficiently small, such that diffusion of the free molecules can be considered fast 
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compared to the MT binding kinetics, then diffusional equilibration of cfree is virtually 
instantaneous over all relevant distances. Thus cfree is the same at every point, and equations 
(7a, b) with initial conditions (2) reduce to a set of three ordinary differential equations for the 
concentrations cfree, cbound,1, and cbound,2 where indices 1 and 2 refer to the bleached and the 
unbleached region: 
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Equations (8a) and (8b) (or (8a) and (8c)) are the rate equations describing reversible 
association and dissociation of tau and MTs. At equilibrium ( 0// == dtdcdtdc boundfree ) the 

concentrations obey the relationship 
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Here, 1!
= onfree k" , 1!

= offbound k" denote the mean time periods the molecules spend in the free 

or the bound state before binding or unbinding, respectively.  
 
Equations (8a,b,c) can be solved by first considering a cylinder of finite length L> , then 
increasing its length to infinity. The result for the bleached region is 
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where 0,eq

freec  and  0,eq

boundc  are the equilibrium concentrations before bleach, 
0

0,0, ccc eq

bound

eq

free =+ . 

By combination of (10a) and (10b), the total concentration at the bleached region is: 
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Thus, recovery after bleaching of a small region within the axon follows an exponential time 
dependence with rate constant koff. Equation (10b) can be obtained more easily by 
considering the bleached instead of the unbleached molecules, i.e. by solving reaction-
diffusion equations (7a, b) for initial conditions complementary to (2), that is 0)0,( ctxc ==  

for 22 LxL <<! , and zero elsewhere. Since the diffusion is assumed to be fast, freec  in 

this case drops immediately to zero, 0=freec  for all x and for all t > 0. Thus, 
tkeq

bound

tkt

boundbound
offoff ecectc

!!=
==

0,0)( . If we assume that bleaching does not change the 

fundamental properties of the molecules (but only their visibility), and if the system was at 
equilibrium before the bleach, then it will stay at equilibrium all the time, and any change in 
the concentration of the bleached molecules must be compensated by redistribution of the 
unbleached molecules. Thus the solutions for the bleached and the unbleached molecules 
follow the same (complementary) time dependence. Since this is a general argument that 
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does not rely on the special geometry of the system, the result in equation (10c) is valid for 
any geometry and can be applied, in principle, to the axon (one-dimension case) or the cell 
body (three-dimension case) as long as the bleached region is sufficiently small. 
 
If the bleached region is large, and if we disregard local details at the boundaries between 
the bleached and the unbleached regions, but only consider the long-term behavior at large 

scales (characteristic time boundfreec DLt !!! +=>>"
2 , where ! is the mean time a 

molecule needs to cycle through the bound and the unbound state), then the reaction-
diffusion equation (7a) can be simplified: If !>>

c
t , each molecule attaches and detaches 

many times during all relevant time intervals; thus, the long-term molecular motions are the 
same as those of freely diffusing molecules, if only the fraction of time the molecules are 
freely diffusing is taken into account. Hence, the behavior of molecules interacting with MTs 
can be described with a simple diffusion equation by substituting the real time, t, by the 
effective time, difft , i.e. the time during which the molecules are actually diffusing: 
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Thus, at very long time scales ( 11 !!
+>> offon kkt ) molecules that bind to MTs reversibly behave 

like freely diffusing molecules with an apparent diffusion coefficient 
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Again, this conclusion holds for any geometry. 
 
By numerical integration of the reaction-diffusion equations (7a, b) for a range of parameters 
we found that our bleaching experiments can by analyzed in terms of the limiting cases 
discussed above (see Fig. S1). For the long-range bleaching experiments, approximation by 
an apparent diffusion coefficient is excellent. Interpretation of the experiments with small 
bleach regions to determine offk  by using equation (10c) is more critical. At very short and 

very long times, the approximation inevitably breaks down. At medium time scales, the 
difference to the limiting exponential curve stays nearly constant (Fig. S1b). As a 
consequence, offk values determined by exponential fitting of the data in the medium time 

range are within a factor of 2 close to the true value as long as bleaching zone does not 
exceed ~4 µm (see Fig. S1b for details). 
 
Diffusion with active transport by microtubules: To account for the contribution of active 
transport of tau by attachment to moving fragments of microtubules, equations (7a, b) were 
expanded into three equations for freec , 

boundmobile
cmc != , and 

boundstat
cmc !"= )1( , where m 

is the fraction of the bound molecules transported by moving fragments of MTs, and an 

advection term 
x

c
v

mobile

!

!
"  was added to the equation of the mobile fraction (v, velocity of 

moving MT fragments). 
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For the simulation of tau dispersal in axons by diffusion and active transport (see Fig 6d), 
equations (13a,b,c) were numerically integrated with parameters m = 0.004 and v = 1 µm/s, 
corresponding to slow axonal transport with an average velocity of 0.003 µm/s. 
 
Model calculations of Fig. 6d: The figure shows the long-term (30 days, top) and short term 
(16 hours, bottom) distribution of tau with different conditions. The blue solid line represents 
the linear movement of a pulse of labeled tau observed experimentally in slow axonal 
transport (~0.003 µm/s or ~0.2-0.4 mm/d, Mercken et al., 1995). The long-term movement of 
this tau is determined by its piggy-backing on MT fragments which move slowly by dynein 
dependent sliding along other stationary microtubules or microfilaments (Wang & Brown, 
2002; He et al., 2005), but otherwise are almost non-diffusible. If diffusion is taken into 
account (red solid line, top), the front would arrive ~1-2 days earlier at a particular point along 
the axon, but the slopes (= mean velocities) are nearly the same because long term behavior 
is dominated by active transport of tau on microtubule fragments. However, up to ~10 days 
or ~3 mm diffusion is more efficient, as seen from the dashed curve (top) for the KXGE-tau 
mutant (which does not bind to MTs). In the case of reversible binding of wildtype tau to MTs 
(black solid line, bottom), the spreading is slowed down because tau molecules spend part of 
their time on slowly-moving MTs, but even here diffusion exceeds slow transport up to ~3 
days or ~1 mm down the axon (intersection of blue and black lines, top). By contrast, the 
tightly binding construct 8R-tau spends most of its time on the immobile MT cytoskeleton and 
therefore has a severely restricted diffusion, but even here it advances faster than the MT 
fragments during the first day. The thick short line (green, bottom) represents the spreading 
of the labeled tau front reported by Utton et al. (2004) in cortical neurons. From these 
experimental data one cannot determine the relative contributions of diffusion vs. movement 
by sliding. 
 
Ratio of cytoplasmic to MT-bound tau: To be sure that tau and its mutants are really 
bound to MTs in the imaged axons the ratio of MT-bound to cytoplasmic tau was determined. 
CFP-4KXGE-tau and mRFP-tau were co-transfected. CFP-4KXGE-tau has a very low affinity 
to microtubules because it is pseudo-phosphorylated and therefore and fills the entire volume 
of the axon, including regions of axonal protrusions where microtubules are not present. 
mRFP-tau (wildtype) has a high affinity for microtubules, it is thus found mainly in the 
microtubule rich areas and does not show strong additional signals in axonal protrusions 
(Fig. 4e). The ratio of the signal intensities of the two tau mutants (mRFP:CFP) in areas 
without MT (Fig. 4e, arrows) was used to normalize the intensities. The ratio of soluble to 
MT-bound tau can then be calculated because the intensity of CFP-4KXGE is proportional to 
cytosolic unbound mutant tau and the mRFP-tau signal reflects the sum of microtubule and 
cytoplasmic wildtype tau. The microtubule-bound fraction was calculated by subtracting the 
CFP-4KXGE-tau from mRFP-tau. In 9 separate experiments the ratio of microtubule-bound 
to unbound cytosolic tau was found to be 3:1. The ratio is consistent with the Kd of Tau (~1 
µM).  
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Supplement figure legends 
 
Fig. S1: Simulation of the fluorescence recovery after photobleaching by diffusion of 
tau in axonal segments. The curves in panel a and b show the time dependence of ccen, the 
concentration of total unbleached tau at the center of a bleached region (relative to the initial 
concentration before bleach, co) for various lengths L of the bleach zone (L = 1, 2, 4, 8, 16, 
32 µm). The curves were obtained by numerical integration of the reaction-diffusion 

equations (7a, b) with D = 10 µm²/s, free! = 1 s, 1

2/1
2ln

!
== offbound kt"  = 3 s. Since the 

relevant time scales vary over three orders of magnitude (increasing quadratically with L), the 
over-all recovery in panel (a) is plotted with an L-dependent time scale, 

( ) tLt !=
2*

ìm32 (e.g. t* = t for L = 32 µm, t* = 1024 t for L = 1 µm, i.e. the end point of the 
x-axis corresponds to shorter times as L decreases). For comparison, panel (b) shows only 
the initial phase of the recovery, using the same fixed time scale for all curves (from 0 to 20 
seconds).  
Panel a: The dashed curve corresponds to the analytical solution for infinitely fast binding 
and unbinding of tau (equation 5 with Dapp = 0.25D). It represents the limiting curve that is 
approached in the case of very long bleached segments (where binding/unbinding is rapid 
compared with diffusion along the axon). This curve is almost indistinguishable from the L = 
32 µm curve when one uses the above realistic rates for binding/unbinding. For L = 32 µm, it 

takes 600 s or 10 min to recover to 78% ( tt =
* , in this case). The dotted line represents the 

exponential recovery expected for an infinitely small bleach area (small L limit, equation 10c) 

over the time range of the 1 µm curve (0 to ~0.6 s, ttt !=!= 102432
2* ). Only the initial, 

almost linear part of the exponential recovery is visible. The curve starts with a finite value, 
( ) 25.0=+ freeboundfree !!! , which corresponds to the concentration of free molecules, since 

bleached molecules in solution are instantaneoulsy replaced by unbleached molecules in the 
limit of zero bleach length. Approach of the 1 µm curve to the dotted line is extremely slow 

(see also panel b). Theoretically, 100% recovery at !"
*
t  is expected only for infinitely 

long cylinders (axons). For finite geometries, the maximum recovery is always smaller than 1 
(unless new molecules are created) assuming that the absolute number of fluorescent 
molecules is irreversibly reduced by bleaching. Note that the gap between the 1 µm curve 
and the dotted line that remains even at longer times (panel b) is not due to the finite size 
effect; the boundary conditions used for numerical simulations avoid this effect.  
Panel b: Curves corresponding to those of panel a are shown within the same time range (0 
to 20 s) for all curves. The exponential curve representing the limiting case of an infinitely 
short bleach zone (dotted line, "0 µm") recovers to virtually 100% over the time of 20 s (time 

constant of recovery: ==
!1

offbound k" 3 s). For very long bleach length L, recovery starts 

slowly and follows a pure diffusion curve with apparent diffusion constant Dapp, reflecting the 
fact that diffusion is so slow that free and bound molecules are always close to equilibrium. 
For short segments (L < ~4 µm) recovery after photobleach displays three phases. During a 
short initial phase, from 0=t  to a fraction of a second, the concentration of unbleached 
molecules increases rapidly, since diffusion over short distances is fast and the concentration 
gradient of the diffusing molecules is high at the beginning. Once the concentration in the 
bleach zone has almost reached the equilibrium concentration of free molecules everywhere 
in solution, the recovery curve switches over to the second phase. This is governed by the 
kinetics of unbinding of bleached molecules and their substitution by unbleached molecules. 
In this phase, recovery follows a curve similar in shape to the limiting exponential curve. 
However, the recovery curve does not reach the same level as the exponential curve at 
realistic time scales accessible in experiments. Even for bleaching zones as short as 1 µm, 
approach to full recovery is extremely slow compared to the exponential curve, due to  the 
fact that with increasing time the relevant distance to be covered by diffusion increases (i.e. 
the partially depleted region is always expanding, and unbleached molecules have to be 
supplied from more and more distant regions); thus, the assumption of fast diffusion 
becomes more and more inadequate. Nevertheless, approximation of the second phase by 
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an exponential function is excellent at least for bleach lengths of 4 µm and below. The 
apparent time constants, however, differ fom the true value (3 s). The numerical simulations 
can be used to calculate correction factors for the apparent! values obtained under the 
simplifying assumption of an exponential curve. Example: fitting the curves in the entire 
range from 0 to 20 s with a single exponential function leads to apparent ! values of 3.45 s 
(L = 1 µm), 3.98 s (2 µm), and 5.15 s (4 µm). Since the bleached spot in the "short L" 
experiments was between 2 - 4 µm, the correction factors for the koff rates range between 1.3 
and 1.8 . It should be mentioned that these correction factors apply for diffusion in a quasi 1-
dimensional geometry (like a segment of a thin cylinder). For FRAP experiments in a really 3-
dimensional environement (e.g. small area in the middle of a cell body), approximation of the 
limiting exponential curve is expected to be much better (thus, correction factors should be 
closer to 1), since the depletion zone is filled up more efficiently with unbleached molecules 
arriving from all directions. 
 
The curves in panel a may be interpreted in an alternative way: They also represent the 
different time dependencies expected for varying time constants free!  and freebound !! 3=  at a 

fixed bleach length, e.g. L = 32 µm. The curves labeled 16, 8, 4, 2, and 1 µm would then 
correspond to time constants =free!  4, 16, 64, 256, and 1024 s, respectively. Thus, even in 

the case of the strongly binding 8R-tau mutant ( free! of the order of 4 s, corresponding to the 

curve labeled "16 µm"), the large L limit is a fairly good approximation for the experimental 
condition we used. 
 
Figure S2: RGC neuron expressing CFP-KXGE and mRFP-tau. Cotransfected RGC 
neurons with mRFP-tau (red) and CFP-4KXGE-tau (green) were used to calculate the ratio 
of cytoplasmic tau to microtubule-bound tau. The CFP-KXGE-tau mutant does not bind to 
MTs and can be used as a volume marker because it just shows cytoplasmic localization. 
Arrows indicate axonal protrusions containing soluble tau but no microtubules. The signals of 
the two fluorophores were normalized by the signal intensities in these MT free areas. After 
that procedure the KXGE-tau intensities reflect the intensities of the cytoplasmic portion of 
mRFP-tau. The signal of the 4KXGE-tau mutant was subtracted from the signal of total tau 
leading to an image showing only MT-bound tau. The fraction of free tau was calculated by 
subtracting the signal of MT-bound tau from that of total tau. Arrowheads point to regions 
with MT-bound and free tau. 
The procedure is described by the following equations (I = signal intensity, x = factor needed 
to normalize the signal intensities in the protrusions containing only tau):   
(1a) x = ICFP-KXGE, protrusion / ImRFP-tau,protrusion 
(1b) ImRFP-tau,axon, MT-bound  = ImRFP-tau, axon – (ICFP-KXGE, axon / x) 
(1c) ImRFP-tau,axon, unbound      = ImRFP-tau, axon – ImRFP-tau, axon, MT-bound 
 
Example:  
ImRFP-tau, axon = 230, ImRFP-tau,protrusion = 30, ICFP-KXGE, axon = 105, ICFP-KXGE, protrusion = 75, yielding 
(1a) x = 75 / 30 = 2.5 
(1b) ImRFP-tau,axon,MT-bound = 230 – (105 / 2.5) = 188 
(1c) ImRFP-tau,axon,unbound = 42 
Thus, ~80% of the total tau is bound to microtubules, ~20% is unbound cytosolic tau. 
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