



Supplemental Figure 1. Whole-cell recordings of voltage activated currents from uniglomerular projection neurons under different pharmacological conditions. Holding potential was -80 mV. Potential was stepped from -80 to 0 mV in 10 mV increments. *A*, Tetrodotoxin ($10^{-7} - 10^{-4}$ M, TTX) blocked transient, voltage gated Na⁺ currents. Cd²⁺ (5 x 10^{-4} M) blocked Ca²⁺ currents and accordingly Ca²⁺ activated outward currents ($I_{O(Ca)}$). 4-aminopyridine (4 x 10^{-3} M, 4-AP) was used to block transient K⁺ currents (I_A) and tetraethylammonium (2 x 10^{-2} M, TEA) blocked sustained K⁺ currents ($I_{K(V)}$) and $I_{O(Ca)}$. *B*, To eliminate residual K⁺ currents K-aspartate was substituted with CsCl in the pipette solution.

Supplemental Figure 2. Steady state inactivation of voltage activated Ca²⁺ currents (*I*_{Ca}) in uPNs, type I LNs and type II LNs. *A*, Example current traces. Test pulses to -5 mV were preceded by 500 ms pulses ranging from -95 mV to -5 mV in 5 mV increments. *B*, *I/V* relations of steady state inactivation of peak *I*_{Ca} from uPNs, type I LNs and type II LNs. The curves are fits to first-order Boltzmann relations (equation 1) with the following parameters: uPN: $V_{0.5_{inact}} = -29.6 \pm 4.0$ mV; $s_{inact} = 8.4 \pm 0.5$; n = 12. Type I LN: $V_{0.5_{inact}} = -30 \pm 7.4$ mV; $s_{inact} = 18.3 \pm 1.5$; n = 10. Type II LN: $V_{0.5_{inact}} = -30 \pm 7.4$ mV; $s_{inact} = 12$.

Supplemental Figure 3. Steady state activation of voltage activated Ca²⁺ currents in acutely dissociated antennal lobe neurons. **A**, Current traces for steady state activation of I_{Ca} from two neurons. Example 1 resembles the I_{Ca} of type I LNs. Example 2 resembles the I_{Ca} of type II LNs. I_{Ca} was evoked by 50 ms voltage steps from -60 mV to 40 mV in 5 mV increments. **B**, I/V relations of I_{Ca} recorded in example 1 and 2

	uPN	type I LN	type II LN
E_M (mV)	$-61.4 \pm 9.1 \circ $ n = 14	$-53.0 \pm 7.4 \circ n = 16$	-56.9 ± 11.3 n = 24
R_M (M Ω)	89.6 ± 39.2 [•] □	$50.6 \pm 22.3^{\bullet^+}$	37.6 ± 14.9 ^{□+}
	<i>n</i> = 11	n = 13	n = 22
<i>C_M</i> (pF)	$22.9 \pm 9.3 \stackrel{\bullet \square}{}$	36.8 ± 16.3 •+	87.7 ± 38.7 ^{□+}
	n = 15	n = 19	n = 29
I _{Ca} tail current			
I _{Ca,tailmax} (nA)	$2.1 \pm 0.6^{\circ \Box}$	$1.4 \pm 0.6^{\bullet +}$	3.3 ± 1.2 ^{□+}
	n = 12	n = 10	n = 12
*I _{Ca,tail_{max}} Α _M -1	0.9 ± 0.3 •	0.5 ± 0.2 [□]	$0.4 \pm 0.1^{\bullet \Box}$
(pA μm ⁻¹)	n = 12	n = 10	n = 12
G _{max} (nS)	$16.1 \pm 4.7 \stackrel{\bullet_{\Box}}{}$	$10.4 \pm 4.8^{\bullet +}$	21.9 ± 7.7 ^{□+}
	n = 12	n = 10	<i>n</i> = 12
*G _{max} A _M ⁻¹	6.6 ± 2.5 •	3.5 ± 1.7 [□]	$2.4 \pm 0.7^{\bullet \Box}$
(nS μm ⁻¹)	n = 12	n = 10	n = 12
<i>V_{0.5act}</i> (mV)	-10.6 ± 3.4 • $n = 12$	-11.1 ± 6.5 [□] n = 10	-19.4 ± 4.7 ^{●□} n = 12
S _{act}	8.5 ± 1.8 •	10.0 ± 2.3 [□]	$6.4 \pm 2.3^{\bullet \Box}$
	n = 12	n = 10	n = 12
I _{Ca} peak current			
I _{Ca_{max} (nA)}	$1.4 \pm 0.4^{\bullet \Box}$	$1 \pm 0.3^{\bullet +}$	3 ± 1 ^{□+}
	n = 12	n = 10	<i>n</i> = 12
<i>E</i> _M at <i>I</i> _{Ca_{max} (mV)}	5.8 ± 4.9 • $n = 12$	9.0 ± 6.1 ^{\Box} $n = 10$	$-7.5 \pm 7.2^{\bullet \Box}$ n = 12
V _{0.5_{inact} (mV)}	-29.6 ± 4.0	-30 ± 7.4	-30 ± 7.2
	n = 12	n = 10	n = 12
Sinact	8.4 ± 0.5 ^{●□}	18.3 ± 1.5 •	13.8 ± 0.5 [□]
	n = 12	n = 10	n = 12

Supplemental Table 1. Electrophysiological parameters of uniglomerular projection neurons (uPNs), type I and type II local interneurons (LNs). Values labeled by the same symbol are significantly different from each other ($P \le 0.05$).

* To calculate these values we used the values for whole-cell capacitance and -surface from measurements that were made with 'calcium' extra-/intracellular saline (see results: characteristics of I_{Ca}).