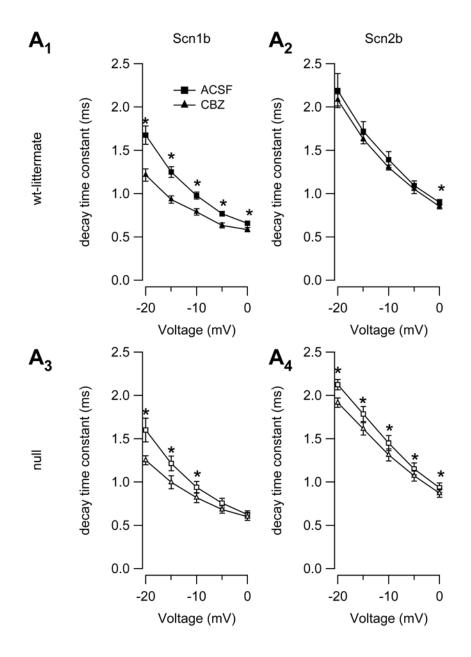
Supplementary Table 1: Maximal conductances \overline{g} (mS/cm²) and permeabilities (cm/s) of the currents included in the model. Transient Na⁺ current (I_{NaT}), persistent Na⁺ current (I_{NaP}), intermediate Na⁺ current (I_{NaT-In}), delayed rectifier K⁺ current (I_{KDR}), slow K⁺ current (I_{Kslow}), A-type K⁺ current (I_{KA}), M-type K⁺ current (I_{KM}), Voltage- and Ca²⁺-dependent K⁺ current (I_{KCT}), Ca²⁺-dependent K⁺ current (I_{KAHP}), leak K⁺ current (I_{Kleak}), T-type Ca²⁺ current (I_{CaT}), L-type Ca²⁺ current (I_{CaL}), R-type Ca²⁺ current (I_{CaR}), N- and P/Q-type Ca²⁺ current (I_{Canpq}), hyperpolarization activated current (I_{H}). Since the Ca²⁺ currents were calculated according to the Goldman-Hodgkin-Katz equation the permeabilities are given instead of conductances. The conductance for I_{NaP} was systematically varied (see results). Some current densities at the dendrites were scaled linearly with the distance from soma (gradient, see Supplementary Table 2).

Current	Soma	Dendrites	Axon	Axon	AIS
				hillock	
$I_{\rm NaT}$	50	gradient	80	50	200
$I_{\rm NaP}$	varied	-	-	varied	varied
I _{NaT-In}	0.5	-	-	0.5	0.5
$I_{\rm KDR}$	5	9	25	5	30
$I_{\rm Kslow}$	12	2		12	8
$I_{\rm KA}$	11	gradient	20	11	20
$I_{\rm KM}$	3.2	-	5	3.2	4
$I_{\rm KCT}$	20	-	-	-	-
$I_{\rm KAHP}$	0.4	-	-	-	-
<i>I</i> _{Kleak}	0.04	0.04	-	-	-
$I_{\rm CaT}$	1 10 ⁻⁵	gradient	-	-	-
$I_{\rm CaL}$	6.622 10 ⁻⁵	-	-	-	-
$I_{\rm CaR}$	4.4 10 ⁻⁵	-	-	-	-
<i>I</i> _{Canpq}	1.54 10 ⁻⁵	-	-	-	-
I _H	0.005	0.01	-	-	-


Supplementary Table 2: Somatodendritic gradients of maximal conductances in apical and basal dendrites for I_{CaT} , I_{KA} and I_{NaT} . Conductances/permeabilities along the dendrites were calculated as f(x)=ax+b with x defined as distance from the soma normalized to the length of the dendrite (x=0 to x=1 from the nearest to the most distant point from the soma, respectively).

Apical dendrites	а	b	
I _{CaT}	3 10 ⁻⁵	6 10 ⁻⁶	
I _{KA}	30	20	
I _{NaT}	-5	10	
Basal dendrites			
I _{CaT}	1.2 10-5	6 10 ⁻⁶	
I _{KA}	20	20	
I _{NaT}	-5	10	

Supplementary Table 3: Parameters of single action potentials in Scn1b and Scn2b					
null mice and their littermate controls.					

		Sci	Scn1b		Scn2b	
		+/+	_/_	+/+	-/-	
Action potential	Peak (mV)	29±2.0	17±3.6	19±2.0	19±2.9	
morphology	Slope (mV/ms)	514±48	406±62	374±7	357±62	
	Threshold (mV)	-54±2.8	-56±3.1	-53±3.1	-51±4.4	
	Halfwidth (ms)	0.68 ± 0.05	0.86 ± 0.06	0.72±0.04	0.71±0.02	

Supplementary Figure 1: Acceleration of inactivation with CBZ. Time course of decay was quantified with monoexponential fitting at various command potentials for *Scn1b* and *Scn2b* null mice (panel A_3 , A_4) and their littermate controls (panels A_1 , A_2). Significant differences are indicated by asterisks.

