Elsevier

NeuroImage

Volume 13, Issue 4, April 2001, Pages 684-701
NeuroImage

Regular Article
Human Primary Auditory Cortex: Cytoarchitectonic Subdivisions and Mapping into a Spatial Reference System

https://doi.org/10.1006/nimg.2000.0715Get rights and content

Abstract

The transverse temporal gyrus of Heschl contains the human auditory cortex. Several schematic maps of the cytoarchitectonic correlate of this functional entity are available, but they present partly conflicting data (number and position of borders of the primary auditory areas) and they do not enable reliable comparisons with functional imaging data in a common spatial reference system. In order to provide a 3-D data set of the precise position and extent of the human primary auditory cortex, its putative subdivisions, and its topographical intersubject variability, we performed a quantitative cytoarchitectonic analysis of 10 brains using a recently established technique for observer-independent definition of areal borders. Three areas, Te1.1, Te1.0, and Te1.2, with a well-developed layer IV, which represent the primary auditory cortex (Brodmann area 41), can be identified along the mediolateral axis of the Heschl gyrus. The cell density was significantly higher in Te1.1 compared to Te1.2 in the left but not in the right hemisphere. The cytoarchitectonically defined areal borders of the primary auditory cortex do not consistently match macroanatomic landmarks like gyral and sulcal borders. The three primary auditory areas of each postmortem brain were mapped to a spatial reference system which is based on a brain registered by in vivo magnetic resonance imaging. The integration of a sample of postmortem brains in a spatial reference system allows one to estimate the spatial variability of each cytoarchitectonically defined region with respect to this reference system. In future, the transfer of in vivo structural and functional data into the same spatial reference system will enable accurate comparisons of cytoarchitectonic maps of the primary auditory cortex with activation centers as established with functional imaging procedures.

References (108)

  • C. Liegeois Chauvel et al.

    Evoked potentials recorded from the auditory cortex in man: Evaluation and topography of the middle latency components

    Electroencephalogr. Clin. Neurophysiol.

    (1994)
  • J.C. Mazziotta et al.

    A probabilistic atlas of the human brain: Theory and rationale for its development. The International Consortium for Brain Mapping (ICBM)

    NeuroImage

    (1995)
  • D. McFadden

    A speculation about the parallel ear asymmetries and sex differences in hearing sensitivity and otoacoustic emissions

    Hear. Res.

    (1993)
  • B. Merker

    Silver staining of cell bodies by means of physical development

    J. Neurosci. Methods

    (1983)
  • M.E. Nicholls

    Support for a structural model of aural asymmetries

    Cortex

    (1998)
  • C. Pantev et al.

    Neuromagnetic evidence of an amplitopic organization of the human auditory cortex

    Electroencephalogr. Clin. Neurophysiol.

    (1989)
  • C. Pantev et al.

    Specific tonotopic organizations of different areas of the human auditory cortex revealed by simultaneous magnetic and electric recordings

    Electroencephalogr. Clin. Neurophysiol.

    (1995)
  • D. Poeppel et al.

    Task-induced asymmetry of the auditory evoked M100 neuromagnetic field elicited by speech sounds

    Brain Res. Cognit. Brain Res.

    (1996)
  • A. Polyakov et al.

    Three-channel Lissajous' trajectory of the binaural interaction components of human auditory middle-latency evoked potentials

    Hear. Res.

    (1995)
  • J.P. Rauschecker

    Auditory cortical plasticity: A comparison with other sensory systems

    Trends Neurosci.

    (1999)
  • M. Reite et al.

    Magnetic auditory evoked fields: Interhemispheric asymmetry

    Electroencephalogr. Clin. Neurophysiol.

    (1981)
  • M. Reite et al.

    MEG and EEG auditory responses to tone, click and white noise stimuli

    Electroencephalogr. Clin. Neurophysiol.

    (1982)
  • M. Reite et al.

    Auditory M100 component 1: Relationship to Heschl's gyri

    Brain Res. Cognit. Brain Res.

    (1994)
  • F. Rivier et al.

    Cytochrome oxidase, acetylcholinesterase, and NADPH-diaphorase staining in human supratemporal and insular cortex: Evidence for multiple auditory areas

    NeuroImage

    (1997)
  • P.E. Roland et al.

    Brain atlases—A new research tool

    Trends Neurosci.

    (1994)
  • P.E. Roland et al.

    Structural divisions and functional fields in the human cerebral cortex

    Brain Res. Brain Res. Rev.

    (1998)
  • D. Scheuneman et al.

    Magnetic auditory M100 source location in normal females

    Brain Res. Bull.

    (1991)
  • A. Schleicher et al.

    Observer-independent method for microstructural parcellation of cerebral cortex: A quantitative approach to cytoarchitectonics

    NeuroImage

    (1999)
  • H.L. Seldon

    Structure of human auditory cortex. I. Cytoarchitectonics and dendritic distributions

    Brain Res.

    (1981)
  • H. Steinmetz et al.

    Total surface of temporoparietal intrasylvian cortex: Diverging left–right asymmetries

    Brain Lang.

    (1990)
  • C. Verkindt et al.

    Tonotopic organization of the human auditory cortex: N100 topography and multiple dipole model analysis

    Electroencephalogr. Clin. Neurophysiol.

    (1995)
  • K. Amunts et al.

    Broca's region revisited: Cytoarchitecture and intersubject variability

    J. Comp. Neurol.

    (1999)
  • P. Bailey et al.

    The Isocortex of Man

    (1951)
  • E. Beck

    Die Myeloarchitektonik der dorsalen Schläfenlappenrinde beim Menschen

    J. Psychol. Neurol.

    (1930)
  • P. Belin et al.

    Lateralization of speech and auditory temporal processing

    J. Cognit. Neurosci.

    (1998)
  • J.R. Binder et al.

    Functional magnetic resonance imaging of human auditory cortex

    Ann. Neurol.

    (1994)
  • A. Bodegård et al.

    Somatosensory areas in man activated by moving stimuli: Cytoarchitectonic mapping and PET

    NeuroReport

    (2000)
  • A. Bodegård et al.

    Object shape differences reflected by somatosensory cortical activation

    J. Neurosci.

    (2000)
  • H. Braak

    The pigment architecture of the human temporal lobe

    Anat. Embryol. Berlin

    (1978)
  • K. Brodmann

    Vergleichende Lokalisationslehre der Grosshirnrinde in Ihren Prinzipien Dargestellt auf Grund des Zellaufbaus

    (1909)
  • K.R. Castleman

    Digital Image Processing

    (1979)
  • G.G. Celesia

    Organization of auditory cortical areas in man

    Brain

    (1976)
  • S. Clarke et al.

    Compartments within human primary auditory cortex: Evidence from cytochrome oxidase and acetylcholinesterase staining

    Eur. J. Neurosci.

    (1998)
  • W.J. Dixon et al.

    BMDP Statistical Software Manual

    (1988)
  • C. Economo et al.

    Die Cytoarchitektonik der Hirnrinde des Erwachsenen Menschen

    (1925)
  • C. Economo et al.

    Über Windungsrelief, Masse und Rindenarchitectonik der Supratemporalfläche, ihre individuellen und ihre Seitenunterschiede

    Z. Neurol. Psychiat.

    (1930)
  • A.M. Galaburda et al.

    Human brain: Cytoarchitectonic left–right asymmetries in the temporal speech region

    Arch. Neurol.

    (1978)
  • A. Galaburda et al.

    Cytoarchitectonic organization of the human auditory cortex

    J. Comp. Neurol.

    (1980)
  • N. Geschwind et al.

    Human brain: Left–right asymmetries in temporal speech region

    Science

    (1968)
  • N. Geschwind et al.

    Cerebral lateralization: Biological mechanisms, associations, and pathology. I. A hypothesis and a program for research

    Arch. Neurol.

    (1985)
  • Cited by (0)

    1

    To whom correspondence and reprint requests should be addressed at the C&O Vogt Institute for Brain Research, Heinrich-Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany. Fax: +49-211-8112336. E-mail: [email protected].

    View full text