Skip to main content

NCAM in Neuropsychiatric and Neurodegenerative Disorders

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 663))

Abstract

The neural cell adhesion molecule (NCAM) has roles in normal brain development, including axonal/dendritic growth and branching and synaptic plasticity. A growing body of evidence has implicated NCAM as a susceptible risk for neuropsychiatric disorders such as schizophrenia, bipolar disorder, depression, and anxiety disorder, as well as the most prevalent neurodegenerative disease, Alzheimer’s disease. While individuals with these diseases vary in symptoms, age of onset, treatment, and neuronal systems affected, they share cognitive dysfunction as a core feature. This review will highlight the evidence for NCAM in the cause or progression of each of these disorders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hinkle CL, Maness PF (2006) Regulation of neural cell adhesion molecule function by ectodomain shedding. In: Pandalai SG (ed) Recent research developments in molecular and cellular biology. Research Signpost, Kerala, India, pp 121-136

    Google Scholar 

  2. Maness PF, Schachner M (2007) Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nat Neurosci 10:19-26

    PubMed  CAS  Google Scholar 

  3. Cremer H, Chazal G, Lledo PM, Rougon G, Montaron MF, Mayo W, Le Moal M, Abrous DN (2000) PSA-NCAM: an important regulator of hippocampal plasticity. Int J Dev Neurosci 18:213-220

    PubMed  CAS  Google Scholar 

  4. Markram K, Gerardy-Schahn R, Sandi C (2007) Selective learning and memory impairments in mice deficient for polysialylated NCAM in adulthood. Neurosci 1444:788-796

    Google Scholar 

  5. Polo-Parada L, Bose CM, Plattner F, Landmesser LT (2004) Distinct roles of different neural cell adhesion molecule (NCAM) isoforms in synaptic maturation revealed by analysis of NCAM 180 kDa isoform-deficient mice. J Neurosci 24:1852-1864

    PubMed  CAS  Google Scholar 

  6. Stork O, Welzl H, Wolfer D, Schuster T, Mantei N, Stork S, Hoyer D, Lipp H, Obata K, Schachner M (2000) Recovery of emotional behaviour in neural cell adhesion molecule (NCAM) null mutant mice through transgenic expression of NCAM180. Eur J Neurosci 12:3291-3306

    PubMed  CAS  Google Scholar 

  7. Freedman R (2003) Schizophrenia. N Engl J Med 349:1738-1749

    PubMed  CAS  Google Scholar 

  8. Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6:312-324

    PubMed  CAS  Google Scholar 

  9. Lewis DA, Moghaddam B (2006) Cognitive dysfunction in schizophrenia: convergence of gamma-aminobutyric acid and glutamate alterations. Arch Neurol 63:1372-1376

    PubMed  Google Scholar 

  10. Barch DM (2005) The cognitive neuroscience of schizophrenia. Annu Rev Clin Psychol 1:321-353

    PubMed  Google Scholar 

  11. Lewis DA, Gonzalez-Burgos G (2007) Neuroplasticity of neocortical circuits in schizophrenia. Neuropsychopharmacology 33:141-165

    PubMed  Google Scholar 

  12. Reynolds GP, Harte MK (2007) The neuronal pathology of schizophrenia: molecules and mechanisms. Biochem Soc Trans 35:433-436

    PubMed  CAS  Google Scholar 

  13. Tenn CC, Fletcher PJ, Kapur S (2005) A putative animal model of the “prodromal” state of schizophrenia. Biol Psychiatry 57:586-593

    PubMed  CAS  Google Scholar 

  14. Muglia P, Macciardi F, Kennedy JL (1999) The neurodevelopmental hypothesis of schizophrenia: genetic investigations. CNS Spectrum 4:78-90

    Google Scholar 

  15. Marenco S, Weinberger DR (2000) The neurodevelopmental hypothesis of schizophrenia: following trail of evidence from cradle to grave. Dev Psychopathol 12:501-527

    PubMed  CAS  Google Scholar 

  16. Vawter MP, Howard AL, Hyde TM, Kleinman JE, Freed WJ (1999) Alterations of hippocampal secreted N-CAM in bipolar disorder and synaptophysin in schizophrenia. Mol Psychiatry 4:467-475

    PubMed  CAS  Google Scholar 

  17. Benes FM, Berretta S (2001) GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25:1-27

    PubMed  CAS  Google Scholar 

  18. Daskalakis ZJ, Fitzgerald PB, Christensen BK (2007) The role of cortical inhibition in the pathophysiology and treatment of schizophrenia. Brain Res Rev 56:427-442

    PubMed  CAS  Google Scholar 

  19. Akbarian S, Huang HS (2006) Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders. Brain Res Rev 52:293-304

    PubMed  CAS  Google Scholar 

  20. Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793-807

    PubMed  CAS  Google Scholar 

  21. Levitt P, Eagleson KL, Powell EM (2004) Regulation of neocortical interneuron development and the implications for neurodevelopmental disorders. Trends Neurosci 27:400-406

    PubMed  CAS  Google Scholar 

  22. Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I, Williams NM, Schwab SG, Pulver AE, Faraone SV, Brzustowicz LM, Kaufmann CA, Garver DL, Gurling HM, Lindholm E, Coon H, Moises HW, Byerley W, Shaw SH, Mesen A, Sherrington R, O’Neill FA, Walsh D, Kendler KS, Ekelund J, Paunio T, Lonnqvist J, Peltonen L, O’Donovan MC, Owen MJ, Wildenauer DB, Maier W, Nestadt G, Blouin JL, Antonarakis SE, Mowry BJ, Silverman JM, Crowe RR, Cloninger CR, Tsuang MT, Malaspina D, Harkavy-Friedman JM, Svrakic DM, Bassett AS, Holcomb J, Kalsi G, McQuillin A, Brynjolfson J, Sigmundsson T, Petursson H, Jazin E, Zoega T, Helgason T (2003) Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: schizophrenia. Am J Hum Genet 73:34-48

    PubMed  CAS  Google Scholar 

  23. Sullivan PF, Keefe RS, Lange LA, Lange EM, Stroup TS, Lieberman J, Maness PF (2007) NCAM1 and neurocognition in schizophrenia. Biol Psychiatry 61:902-910

    PubMed  CAS  Google Scholar 

  24. Close BE, Mendiratta SS, Geiger KM, Broom LJ, Ho LL, Colley KJ (2003) The minimal structural domains required for neural cell adhesion molecule polysialylation by PST/ST8Sia IV and STX/ST8Sia II. J Biol Chem 278:30796-30805

    PubMed  CAS  Google Scholar 

  25. Mendiratta SS, Sekulic N, Lavie A, Colley KJ (2005) Specific amino acids in the first fibronectin type III repeat of the neural cell adhesion molecule play a role in its recognition and polysialylation by the polysialyltransferase ST8Sia IV/PST. J Biol Chem 280:32340-32348

    PubMed  CAS  Google Scholar 

  26. Maziade M, Roy MA, Chagnon YC, Cliche D, Fournier JP, Montgrain N, Dion C, Lavallee JC, Garneau Y, Gingras N, Nicole L, Pires A, Ponton AM, Potvin A, Wallot H, Merette C (2005) Shared and specific susceptibility loci for schizophrenia and bipolar disorder: a dense genome scan in Eastern Quebec families. Mol Psychiatry 10:486-499

    PubMed  CAS  Google Scholar 

  27. Lindholm E, Aberg K, Ekholm B, Pettersson U, Adolfsson R, Jazin EE (2004) Reconstruction of ancestral haplotypes in a 12-generation schizophrenia pedigree. Psychiatr Genet 14:1-8

    PubMed  Google Scholar 

  28. Arai M, Yamada K, Toyota T, Obata N, Haga S, Yoshida Y, Nakamura K, Minabe Y, Ujike H, Sora I, Ikeda K, Mori N, Yoshikawa T, Itokawa M (2006) Association between polymorphisms in the promoter region of the sialyltransferase 8B (SIAT8B) gene and schizophrenia. Biol Psychiatry 59:652-659

    PubMed  CAS  Google Scholar 

  29. Tao R, Li C, Zheng Y, Qin W, Zhang J, Li X, Xu Y, Shi YY, Feng G, He L (2007) Positive association between SIAT8B and schizophrenia in the Chinese Han population. Schizophr Res 90:108-114

    PubMed  Google Scholar 

  30. Barbeau D, Liang JJ, Robitalille Y, Quirion R, Srivastava LK (1995) Decreased expression of the embryonic form of the neural cell adhesion molecule in schizophrenic brains. Proc Natl Acad Sci USA 92:2785-2789

    PubMed  CAS  Google Scholar 

  31. Lyons F, Martin ML, Maguire C, Jackson A, Regan CM, Shelley RK (1988) The expression of an N-CAM serum fragment is positively correlated with severity of negative features in type II schizophrenia. Biol Psychiatry 23:769-775

    PubMed  CAS  Google Scholar 

  32. Poltorak M, Khoja I, Hemperly JJ, Williams JR, el-Mallakh R, Freed WJ (1995) Disturbances in cell recognition molecules (N-CAM and L1 antigen) in the CSF of patients with schizophrenia. Exp Neurol 131:266-272

    PubMed  CAS  Google Scholar 

  33. van Kammen DP, Poltorak M, Kelley ME, Yao JK, Gurklis JA, Peters JL, Hemperly JJ, Wright RD, Freed WJ (1998) Further studies of elevated cerebrospinal fluid neuroral cell adhesion molecule in schizophrenia. Biol Psychiatry 43:680-686

    PubMed  Google Scholar 

  34. Vawter MP, Cannon-Spoor HE, Hemperly JJ, Hyde TM, VanderPutten DM, Kleinman JE, Freed WJ (1998) Abnormal expression of cell recognition molecules in schizophrenia. Exp Neurol 149:424-432

    PubMed  CAS  Google Scholar 

  35. Vawter MP, Hemperly JJ, Freed WJ, Garver DL (1998) CSF N-CAM in neuroleptic-naive first-episode patients with schizophrenia. Schizophr Res 34:123-131

    PubMed  CAS  Google Scholar 

  36. Vawter MP, Usen N, Thatcher L, Ladenheim B, Zhang P, VanderPutten DM, Conant K, Herman MM, van Kammen DP, Sedvall G, Garver DL, Freed WJ (2001) Characterization of human cleaved N-CAM and association with schizophrenia. Exp Neurol 172:29-46

    PubMed  CAS  Google Scholar 

  37. Honer WG, Falkai P, Young C, Wang T, Xie J, Bonner J, Hu L, Boulianne GL, Luo Z, Trimble WS (1997) Cingulate cortex synaptic terminal proteins and neural cell adhesion molecule in schizophrenia. Neuroscience 78:99-110

    PubMed  CAS  Google Scholar 

  38. Hinkle CL, Diestel S, Lieberman J, Maness PF (2006) Metalloprotease-induced ectodomain shedding of neural cell adhesion molecule (NCAM). J Neurobiol 66:1378-1395

    PubMed  CAS  Google Scholar 

  39. Hubschmann MV, Skladchikova G, Bock E, Berezin V (2005) Neural cell adhesion molecule function is regulated by metalloproteinase-mediated ectodomain release. J Neurosci Res 80:826-837

    PubMed  Google Scholar 

  40. Kalus I, Bormann U, Mzoughi M, Schachner M, Kleene R (2006) Proteolytic cleavage of the neural cell adhesion molecule by ADAM17/TACE is involved in neurite outgrowth. J Neurochem 98:78-88

    PubMed  CAS  Google Scholar 

  41. Karkkainen I, Rybnikova E, Pelto-Huikko M, Huovila AP (2000) Metalloprotease-disintegrin (ADAM) genes are widely and differentially expressed in the adult CNS. Mol Cell Neurosci 15:547-560

    PubMed  CAS  Google Scholar 

  42. Yavari R, Adida C, Bray-Ward P, Brines M, Xu T (1998) Human metalloprotease-disintegrin Kuzbanian regulates sympathoadrenal cell fate in development and neoplasia. Hum Mol Genet 7:1161-1167

    PubMed  CAS  Google Scholar 

  43. Cerretti DP, Poindexter K, Castner BJ, Means G, Copeland NG, Gilbert DJ, Jenkins NA, Black RA, Nelson N (1999) Characterization of the cDNA and gene for mouse tumour necrosis factor alpha converting enzyme (TACE/ADAM17) and its location to mouse chromosome 12 and human chromosome 2p25. Cytokine 11:541-551

    PubMed  CAS  Google Scholar 

  44. Asai M, Hattori C, Szabo B, Sasagawa N, Maruyama K, Tanuma S, Ishiura S (2003) Putative function of ADAM9, ADAM10, and ADAM17 as APP alpha-secretase. Biochem Biophys Res Commun 301:231-235

    PubMed  CAS  Google Scholar 

  45. Gilmore JH, van Tol J, Kliewer MA, Silva SG, Cohen SB, Hertzberg BS, Chescheir NC (1998) Mild ventriculomegaly detected in utero with ultrasound: clinical associations and implications for schizophrenia. Schizophr Res 33:133-140

    PubMed  CAS  Google Scholar 

  46. Wood GK, Tomasiewicz H, Rutishauser U, Magnuson T, Quirion R, Rochford J, Srivastava LK (1998) NCAM-180 knockout mice display increased lateral ventricle size and reduced prepulse inhibition of startle. Neuroreport 9:461-466

    PubMed  CAS  Google Scholar 

  47. Rafuse VF, Polo-Parada L, Landmesser LT (2000) Structural and functional alterations of neuromuscular junctions in NCAM-deficient mice. J Neurosci 20:6529-6539

    PubMed  CAS  Google Scholar 

  48. Chazal G, Durbec P, Jankovski A, Rougon G, Cremer H (2000) Consequences of neural cell adhesion molecule deficiency on cell migration in the rostral migratory stream of the mouse. J Neurosci 20:1446-1457

    PubMed  CAS  Google Scholar 

  49. Stork O, Welzl H, Wotjak CT, Hoyer D, Delling M, Cremer H, Schachner M (1999) Anxiety and increased 5-HT1A receptor response in NCAM null mutant mice. J Neurobiol 40:343-355

    PubMed  CAS  Google Scholar 

  50. Bukalo O, Fentrop N, Lee AY, Salmen B, Law JW, Wotjak CT, Schweizer M, Dityatev A, Schachner M (2004) Conditional ablation of the neural cell adhesion molecule reduces precision of spatial learning, long-term potentiation, and depression in the CA1 subfield of mouse hippocampus. J Neurosci 24:1565-1577

    PubMed  CAS  Google Scholar 

  51. Lüthi A, Laurent JP, Figurov A, Muller D, Schachner M (1994) Hippocampal long-term potentiation and neural cell adhesion molecules L1 and NCAM. Nature 372:777-779

    Google Scholar 

  52. Ronn LC, Bock E, Linnemann D, Jahnsen H (1995) NCAM-antibodies modulate induction of long-term potentiation in rat hippocampal CA1. Brain Res 677:145-151

    PubMed  CAS  Google Scholar 

  53. Pillai-Nair N, Panicker AK, Rodriguiz RM, Gilmore KL, Demyanenko GP, Huang JZ, Wetsel WC, Maness PF (2005) Neural cell adhesion molecule-secreting transgenic mice display abnormalities in GABAergic interneurons and alterations in behavior. J Neurosci 25:4659-4671

    PubMed  CAS  Google Scholar 

  54. Brennaman LH, Maness PF (2008) Developmental regulation of GABAergic interneuron branching and synaptic development in the prefrontal cortex by soluble neural cell adhesion molecule. Mol Cell Neurosci 37:781-793doi: 10.1016/j.mcn.2008.01.006

    PubMed  Google Scholar 

  55. Leahy RL (2007) Bipolar disorder: causes, contexts, and treatments. J Clin Psychol 63:417-424

    PubMed  Google Scholar 

  56. Oswald P, Souery D, Kasper S, Lecrubier Y, Montgomery S, Wyckaert S, Zohar J, Mendlewicz J (2007) Current issues in bipolar disorder: a critical review. Eur Neuropsychopharmacol 17:687-695

    PubMed  CAS  Google Scholar 

  57. Farmer A, Elkin A, McGuffin P (2007) The genetics of bipolar affective disorder. Curr Opin Psychiatry 20:8-12

    PubMed  Google Scholar 

  58. Arai M, Itokawa M, Yamada K, Toyota T, Haga S, Ujike H, Sora I, Ikeda K, Yoshikawa T (2004) Association of neural cell adhesion molecule 1 gene polymorphisms with bipolar affective disorder in Japanese individuals. Biol Psychiatry 55:804-810

    PubMed  CAS  Google Scholar 

  59. Atz ME, Rollins B, Vawter MP (2007) NCAM1 association study of bipolar disorder and schizophrenia: polymorphisms and alternatively spliced isoforms lead to similarities and differences. Psychiatr Genet 17:55-67

    PubMed  Google Scholar 

  60. Poltorak M, Frye MA, Wright R, Hemperly JJ, George MS, Pazzaglia PJ, Jerrels SA, Post RM, Freed WJ (1996) Increased neural cell adhesion molecule in the CSF of patients with mood disorder. J Neurochem 66:1532-1538

    PubMed  CAS  Google Scholar 

  61. Vawter MP, Hemperly JJ, Hyde TM, Bachus SE, VanderPutten DM, Howard AL, Cannon-Spoor HE, McCoy MT, Webster MJ, Kleinman JE, Freed WJ (1998) VASE-containing N-CAM isoforms are increased in the hippocampus in bipolar disorder but not schizophrenia. Exp Neurol 154:1-11

    PubMed  CAS  Google Scholar 

  62. Doherty P, Moolenaar CECK, Ashhton SV, Michalides RJAM, Walsh FS (1992) The VASE exon downregulates the neurite growth-promoting activity of NCAM 140. Nature 356:791-793

    PubMed  CAS  Google Scholar 

  63. American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders: DSM-IV [Text revision]. American Psychiatric Association, Washington, DC

    Google Scholar 

  64. To SE, Zepf RA, Woods AG (2005) The symptoms, neurobiology, and current pharmacological treatment of depression. J Neurosci Nurs 37:102-107

    PubMed  Google Scholar 

  65. Schmidt HD, Duman RS (2007) The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior. Behav Pharmacol 18:391-418

    PubMed  CAS  Google Scholar 

  66. Sandi C, Bisaz R (2007) A model for the involvement of neural cell adhesion molecules in stress-related mood disorders. Neuroendocrinology 85:158-176

    PubMed  CAS  Google Scholar 

  67. Conover JC, Yancopoulos GD (1997) Neurotrophin regulation of the developing nervous system: analyses of knockout mice. Rev Neurosci 8:13-27

    PubMed  CAS  Google Scholar 

  68. Alonso M, Medina JH, Pozzo-Miller L (2004) ERK1/2 activation is necessary for BDNF to increase dendritic spine density in hippocampal CA1 pyramidal neurons. Learn Mem 11:172-178

    PubMed  Google Scholar 

  69. McAllister AK, Katz LC, Lo DC (1997) Opposing roles for endogenous BDNF and NT-3 in regulating cortical dendritic growth. Neuron 18:767-778

    PubMed  CAS  Google Scholar 

  70. McAllister AK, Lo DC, Katz LC (1995) Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 15:791-803

    PubMed  CAS  Google Scholar 

  71. Kiss JZ, Troncoso E, Djebbara Z, Vutskits L, Muller D (2001) The role of neural cell adhesion molecules in plasticity and repair. Brain Res Brain Res Rev 36:175-184

    PubMed  CAS  Google Scholar 

  72. Kozisek ME, Middlemas D, Bylund DB (2008) Brain-derived neurotrophic factor and its receptor tropomyosin-related kinase B in the mechanism of action of antidepressant therapies. Pharmacol Ther 117:30-51

    PubMed  CAS  Google Scholar 

  73. Castren E, Voikar V, Rantamaki T (2007) Role of neurotrophic factors in depression. Curr Opin Pharmacol 7:18-21

    PubMed  CAS  Google Scholar 

  74. Mamounas LA, Blue ME, Siuciak JA, Altar CA (1995) Brain-derived neurotrophic factor promotes the survival and sprouting of serotonergic axons in rat brain. J Neurosci 15:7929-7939

    PubMed  CAS  Google Scholar 

  75. Mamounas LA, Altar CA, Blue ME, Kaplan DR, Tessarollo L, Lyons WE (2000) BDNF promotes the regenerative sprouting, but not survival, of injured serotonergic axons in the adult rat brain. J Neurosci 20:771-782

    PubMed  CAS  Google Scholar 

  76. Siuciak JA, Boylan C, Fritsche M, Altar CA, Lindsay RM (1996) BDNF increases monoaminergic activity in rat brain following intracerebroventricular or intraparenchymal administration. Brain Res 710:11-20

    PubMed  CAS  Google Scholar 

  77. Siuciak JA, Clark MS, Rind HB, Whittemore SR, Russo AF (1998) BDNF induction of tryptophan hydroxylase mRNA levels in the rat brain. J Neurosci Res 52:149-158

    PubMed  CAS  Google Scholar 

  78. Saarelainen T, Hendolin P, Lucas G, Koponen E, Sairanen M, MacDonald E, Agerman K, Haapasalo A, Nawa H, Aloyz R, Ernfors P, Castren E (2003) Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci 23:349-357

    PubMed  CAS  Google Scholar 

  79. Lyons WE, Mamounas LA, Ricaurte GA, Coppola V, Reid SW, Bora SH, Wihler C, Koliatsos VE, Tessarollo L (1999) Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proc Natl Acad Sci USA 96:15239-15244

    PubMed  CAS  Google Scholar 

  80. Castren E (2005) Is mood chemistry? Nat Rev Neurosci 6:241-246

    PubMed  CAS  Google Scholar 

  81. Stone EA (2007) A final common pathway for depression: implications for therapy. Expert Opin Ther Targets 11:1019-1032

    PubMed  CAS  Google Scholar 

  82. Stone EA, Lin Y, Quartermain D (2007) A final common pathway for depression? progress toward a general conceptual framework. Neurosci Biobehav Rev 32:508-524doi: 10.1016/j.neubiorev.2007.08.007

    PubMed  Google Scholar 

  83. Varea E, Blasco-Ibanez JM, Gomez-Climent MA, Castillo-Gomez E, Crespo C, Martinez-Guijarro FJ, Nacher J (2007) Chronic fluoxetine treatment increases the expression of PSA-NCAM in the medial prefrontal cortex. Neuropsychopharmacology 32:803-812

    PubMed  CAS  Google Scholar 

  84. Varea E, Castillo-Gomez E, Gomez-Climent MA, Blasco-Ibanez JM, Crespo C, Martinez-Guijarro FJ, Nacher J (2007) Chronic antidepressant treatment induces contrasting patterns of synaptophysin and PSA-NCAM expression in different regions of the adult rat telencephalon. Eur Neuropsychopharmacol 17:546-557

    PubMed  CAS  Google Scholar 

  85. Sairanen M, O’Leary OF, Knuuttila JE, Castren E (2007) Chronic antidepressant treatment selectively increases expression of plasticity-related proteins in the hippocampus and medial prefrontal cortex of the rat. Neuroscience 144:368-374

    PubMed  CAS  Google Scholar 

  86. Stork O, Welzl H, Cremer H, Schachner M (1997) Increased intermale aggression and neuroendocrine response in mice deficient for the neural cell adhesion molecules. Eur J Neurosci 9:424-434

    Google Scholar 

  87. Becker CG, Artola A, Gerardy-Schahn R, Becker T, Welzl H, Schachner M (1996) The polysialic acid modification of the neural cell adhesion molecule is involved in spatial learning and hippocampal long-term potentiation. J Neurosci Res 45:143-152

    PubMed  CAS  Google Scholar 

  88. Muller D, Wang C, Skibo G, Toni N, Cremer H, Calaora V, Rougon G, Kiss JZ (1996) PSA-NCAM is required for activity-induced synaptic plasticity. Neuron 17:413-422

    PubMed  CAS  Google Scholar 

  89. Cremer H, Lange R, Christoph A, Plomann M, Vopper G, Roes J, Brown R, Baldwin S, Barthels D, Rajewsky K, Wille W (1994) Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 367:455-459

    PubMed  CAS  Google Scholar 

  90. Sandi C, Loscertales M (1999) Opposite effects on NCAM expression in the rat frontal cortex induced by acute vs. chronic corticosterone treatments. Brain Res 828:127-134

    PubMed  CAS  Google Scholar 

  91. Sandi C, Merino JJ, Cordero MI, Touyarot K, Venero C (2001) Effects of chronic stress on contextual fear conditioning and the hippocampal expression of the neural cell adhesion molecule, its polysialylation, and L1. Neuroscience 102:329-339

    PubMed  CAS  Google Scholar 

  92. Venero C, Tilling T, Hermans-Borgmeyer I, Schmidt R, Schachner M, Sandi C (2002) Chronic stress induces opposite changes in the mRNA expression of the cell adhesion molecules NCAM and L1. Neuroscience 115:1211-1219

    PubMed  CAS  Google Scholar 

  93. Touyarot K, Venero C, Sandi C (2004) Spatial learning impairment induced by chronic stress is related to individual differences in novelty reactivity: search for neurobiological correlates. Psychoneuroendocrinology 29:290-305

    PubMed  CAS  Google Scholar 

  94. Tsoory M, Guterman A, Richter-Levin G (2008) Exposure to stressors during juvenility disrupts development-related alterations in the PSA-NCAM to NCAM expression ratio: potential relevance for mood and anxiety disorders. Neuropsychopharmacology 33:378-393

    PubMed  Google Scholar 

  95. Alfonso J, Frick LR, Silberman DM, Palumbo ML, Genaro AM, Frasch AC (2006) Regulation of hippocampal gene expression is conserved in two species subjected to different stressors and antidepressant treatments. Biol Psychiatry 59:244-251

    PubMed  CAS  Google Scholar 

  96. Macias M, Fehr S, Dwornik A, Sulejczak D, Wiater M, Czarkowska-Bauch J, Skup M, Schachner M (2002) Exercise increases mRNA levels for adhesion molecules N-CAM and L1 correlating with BDNF response. Neuroreport 13:2527-2530

    PubMed  CAS  Google Scholar 

  97. Koponen E, Rantamaki T, Voikar V, Saarelainen T, MacDonald E, Castren E (2005) Enhanced BDNF signaling is associated with an antidepressant-like behavioral response and changes in brain monoamines. Cell Mol Neurobiol 25:973-980

    PubMed  Google Scholar 

  98. Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS (2002) Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 22:3251-3261

    PubMed  CAS  Google Scholar 

  99. Gascon E, Vutskits L, Jenny B, Durbec P, Kiss JZ (2007) PSA-NCAM in postnatally generated immature neurons of the olfactory bulb: a crucial role in regulating p75 expression and cell survival. Development 134:1181-1190

    PubMed  CAS  Google Scholar 

  100. Glaser T, Brose C, Franceschini I, Hamann K, Smorodchenko A, Zipp F, Dubois-Dalcq M, Brustle O (2007) Neural cell adhesion molecule polysialylation enhances the sensitivity of embryonic stem cell-derived neural precursors to migration guidance cues. Stem Cells 25:3016-3025

    PubMed  CAS  Google Scholar 

  101. Muller D, Djebbara-Hannas Z, Jourdain P, Vutskits L, Durbec P, Rougon G, Kiss JZ (2000) Brain-derived neurotrophic factor restores long-term potentiation in polysialic acid-neural cell adhesion molecule-deficient hippocampus. Proc Natl Acad Sci USA 97:4315-4320

    PubMed  CAS  Google Scholar 

  102. Vutskits L, Djebbara-Hannas Z, Zhang H, Pacccaud JP, Durbec P, Rougon G, Muller D, Kiss JZ (2001) PSA-NCAM modulates BDNF-dependent survival and differentiation of cortical neurons. Eur J Neurosci 13:1391-1402

    PubMed  CAS  Google Scholar 

  103. Jorgensen OS (1988) Neural cell adhesion molecule (NCAM) and prealbumin in cerebrospinal fluid from depressed patients. Acta Psychiatr Scand Suppl 345:29-37

    PubMed  CAS  Google Scholar 

  104. Bienvenu OJ, Ginsburg GS (2007) Prevention of anxiety disorders. Int Rev Psychiatry 19:647-654

    PubMed  Google Scholar 

  105. Bishop SJ (2007) Neurocognitive mechanisms of anxiety: an integrative account. Trends Cogn Sci 11:307-316

    PubMed  Google Scholar 

  106. Garakani A, Mathew SJ, Charney DS (2006) Neurobiology of anxiety disorders and implications for treatment. Mt Sinai J Med 73:941-949

    PubMed  Google Scholar 

  107. Berkowitz RL, Coplan JD, Reddy DP, Gorman JM (2007) The human dimension: how the prefrontal cortex modulates the subcortical fear response. Rev Neurosci 18:191-207

    PubMed  Google Scholar 

  108. Akirav I, Maroun M (2007) The role of the medial prefrontal cortex-amygdala circuit in stress effects on the extinction of fear. Neural Plast 2007:30873

    PubMed  Google Scholar 

  109. Quirk GJ, Gehlert DR (2003) Inhibition of the amygdala: key to pathological states? Ann NY Acad Sci 985:263-272

    PubMed  CAS  Google Scholar 

  110. Delgado MR, Olsson A, Phelps EA (2006) Extending animal models of fear conditioning to humans. Biol Psychol 73:39-48

    PubMed  CAS  Google Scholar 

  111. Rizhova L, Klementiev B, Cambon K, Venero C, Sandi C, Vershinina E, Vaudano E, Berezin V, Bock E (2007) Effects of P2, a peptide derived from a homophilic binding site in the neural cell adhesion molecule on learning and memory in rats. Neuroscience 149:931-942

    PubMed  CAS  Google Scholar 

  112. Goedert M, Spillantini MG (2006) A century of Alzheimer’s disease. Science 314:777-781

    PubMed  CAS  Google Scholar 

  113. Yaari R, Corey-Bloom J (2007) Alzheimer’s disease. Semin Neurol 27:32-41

    PubMed  Google Scholar 

  114. Klementiev B, Novikova T, Novitskaya V, Walmod PS, Dmytriyeva O, Pakkenberg B, Berezin V, Bock E (2007) A neural cell adhesion molecule-derived peptide reduces neuropathological signs and cognitive impairment induced by Abeta25-35. Neuroscience 145:209-224

    PubMed  CAS  Google Scholar 

  115. Gillian AM, Brion JP, Breen KC (1994) Expression of the neural cell adhesion molecule (NCAM) in Alzheimer’s disease. Neurodegeneration 3:283-291

    PubMed  CAS  Google Scholar 

  116. Yew DT, Li WP, Webb SE, Lai HW, Zhang L (1999) Neurotransmitters, peptides, and neural cell adhesion molecules in the cortices of normal elderly humans and Alzheimer patients: a comparison. Exp Gerontol 34:117-133

    PubMed  CAS  Google Scholar 

  117. Cotman CW, Hailer NP, Pfister KK, Soltesz I, Schachner M (1998) Cell adhesion molecules in neural plasticity and pathology: similar mechanisms, distinct organizations? Prog Neurobiol 55:659-669

    PubMed  CAS  Google Scholar 

  118. Murphy KJ, Foley AG, O’Connell AW, Regan CM (2006) Chronic exposure of rats to cognition enhancing drugs produces a neuroplastic response identical to that obtained by complex environment rearing. Neuropsychopharmacology 31:90-100

    PubMed  CAS  Google Scholar 

  119. Jin K, Peel AL, Mao XO, Xie L, Cottrell BA, Henshall DC, Greenberg DA (2004) Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci USA 101:343-347

    PubMed  CAS  Google Scholar 

  120. Mikkonen M, Soininen H, Tapiola T, Alafuzoff I, Miettinen R (1999) Hippocampal plasticity in Alzheimer’s disease: changes in highly polysialylated NCAM immunoreactivity in the hippocampal formation. Eur J Neurosci 11:1754-1764

    PubMed  CAS  Google Scholar 

  121. Strekalova H, Buhmann C, Kleene R, Eggers C, Saffell J, Hemperly J, Weiller C, Muller-Thomsen T, Schachner M (2006) Elevated levels of neural recognition molecule L1 in the cerebrospinal fluid of patients with Alzheimer disease and other dementia syndromes. Neurobiol Aging 27:1-9

    PubMed  CAS  Google Scholar 

  122. Todaro L, Puricelli L, Gioseffi H, Guadalupe Pallotta M, Lastiri J, Bal de Kier Joffe E, Varela M, Sacerdote de Lustig E (2004) Neural cell adhesion molecule in human serum. Increased levels in dementia of the Alzheimer type. Neurobiol Dis 15:387-393

    PubMed  CAS  Google Scholar 

  123. Mirnics ZK, Yan C, Portugal C, Kim TW, Saragovi HU, Sisodia SS, Mirnics K, Schor NF (2005) P75 neurotrophin receptor regulates expression of neural cell adhesion molecule 1. Neurobiol Dis 20:969-985

    PubMed  CAS  Google Scholar 

  124. Geyer H, Bahr U, Liedtke S, Schachner M, Geyer R (2001) Core structures of polysialylated glycans present in neural cell adhesion molecule from newborn mouse brain. Eur J Biochem 268:6587-6599

    PubMed  CAS  Google Scholar 

  125. Strekalova T, Wotjak CT, Schachner M (2001) Intrahippocampal administration of an antibody against the HNK-1 carbohydrate impairs memory consolidation in an inhibitory learning task in mice. Mol Cell Neurosci 17:1102-1113

    PubMed  CAS  Google Scholar 

  126. Thomas SN, Soreghan BA, Nistor M, Sarsoza F, Head E, Yang AJ (2005) Reduced neuronal expression of synaptic transmission modulator HNK-1/neural cell adhesion molecule as a potential consequence of amyloid beta-mediated oxidative stress: a proteomic approach. J Neurochem 92:705-717

    PubMed  CAS  Google Scholar 

  127. Cambon K, Hansen SM, Venero C, Herrero AI, Skibo G, Berezin V, Bock E, Sandi C (2004) A synthetic neural cell adhesion molecule mimetic peptide promotes synaptogenesis, enhances presynaptic function, and facilitates memory consolidation. J Neurosci 24:4197-4204

    PubMed  CAS  Google Scholar 

  128. Neiiendam JL, Kohler LB, Christensen C, Li S, Pedersen MV, Ditlevsen DK, Kornum MK, Kiselyov VV, Berezin V, Bock E (2004) An NCAM-derived FGF-receptor agonist, the FGL-peptide, induces neurite outgrowth and neuronal survival in primary rat neurons. J Neurochem 91:920-935

    PubMed  CAS  Google Scholar 

  129. Popov VI, Medvedev NI, Kraev IV, Gabbott PL, Davies HA, Lynch M, Cowley TR, Berezin V, Bock E, Stewart MG (2008) A cell adhesion molecule mimetic, FGL peptide, induces alterations in synapse and dendritic spine structure in the dentate gyrus of aged rats: a three-dimensional ultrastructural study. Eur J Neurosci 27:301-314

    PubMed  Google Scholar 

  130. Moss ML, Bartsch JW (2004) Therapeutic benefits from targeting of ADAM family members. Biochemistry 43:7227-7235

    PubMed  CAS  Google Scholar 

  131. Eckhardt M, Bukalo O, Chazal G, Wang L, Goridis C, Schachner M, Gerardy-Schahn R, Cremer H, Dityatev A (2000) Mice deficient in the polysialyltransferase ST8SiaIV/PST-1 allow discrimination of the roles of neural cell adhesion molecule protein and polysialic acid in neural development and synaptic plasticity. J Neurosci 20:5234-5244

    PubMed  CAS  Google Scholar 

  132. Stoenica L, Senkov O, Gerardy-Schahn R, Weinhold B, Schachner M, Dityatev A (2006) In vivo synaptic plasticity in the dentate gyrus of mice deficient in the neural cell adhesion molecule NCAM or its polysialic acid. Eur J Neurosci 23:2255-2264

    PubMed  Google Scholar 

  133. Sandi C, Merino JJ, Cordero MI, Kruyt ND, Murphy KJ, Regan CM (2003) Modulation of hippocampal NCAM polysialylation and spatial memory consolidation by fear conditioning. Biol Psychiatry 54:599-607

    PubMed  CAS  Google Scholar 

  134. Rutishauser U (1998) Polysialic acid at the cell surface: biophysics in service of cell interactions and tissue plasticity. J Cell Biochem 70:304-312

    PubMed  CAS  Google Scholar 

  135. Seki T, Rutishauser U (1998) Removal of polysialic acid-neural cell adhesion molecule induces aberrant mossy fiber innervation and ectopic synaptogenesis in the hippocampus. J Neurosci 18:3757-3766

    PubMed  CAS  Google Scholar 

  136. Brocco MA, Frasch AC (2006) Interfering polysialyltransferase ST8SiaII/STX mRNA inhibits neurite growth during early hippocampal development. FEBS Lett 580:4723-4726

    PubMed  CAS  Google Scholar 

  137. Dityatev A, Dityateva G, Sytnyk V, Delling M, Toni N, Nikonenko I, Muller D, Schachner M (2004) Polysialylated neural cell adhesion molecule promotes remodeling and formation of hippocampal synapses. J Neurosci 24:9372-9382

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the UNC Schizophrenia Research Center, an NIMH Silvio O. Conte Center for the Neuroscience of Mental Disorders, (NIH grant MH064065 P.F.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia F. Maness .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Brennaman, L.H., Maness, P.F. (2010). NCAM in Neuropsychiatric and Neurodegenerative Disorders. In: Berezin, V. (eds) Structure and Function of the Neural Cell Adhesion Molecule NCAM. Advances in Experimental Medicine and Biology, vol 663. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1170-4_19

Download citation

Publish with us

Policies and ethics