Skip to main content

On the Limit of Neural Phase Locking to Fine Structure in Humans

  • Conference paper
  • First Online:
Book cover Basic Aspects of Hearing

Part of the book series: Advances in Experimental Medicine and Biology ((volume 787))

Abstract

The frequency extent over which temporal fine structure is available in the human auditory system has recently become a topic of much discussion. It is common, in both the physiological and psychophysical literature, to encounter the assumption that fine structure is available to humans up to about 5 kHz or even higher. We argue from existing physiological, anatomical, and behavioral data in animals, combined with behavioral and anatomical data in humans, that it is unlikely that the human central nervous system has access to fine structure above a few kHz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JC (1996) Neural circuits in the human auditory brainstem. In: Ainsworth WA, Greenberg S (eds) Auditory basis of speech perception. Keele University, Keele, pp 39–44

    Google Scholar 

  • Bazwinsky I, Hilbig H, Bidmon HJ, Rubsamen R (2003) Characterization of the human superior olivary complex by calcium binding proteins and neurofilament H (SMI-32). J Comp Neurol 456:292–303

    Article  PubMed  CAS  Google Scholar 

  • Bernstein LR, Trahiotis C (1996) The normalized correlation: accounting for binaural detection across center frequency. J Acoust Soc Am 100:3774–3784

    Article  PubMed  CAS  Google Scholar 

  • Blackburn CC, Sachs MB (1989) Classification of unit types in the anteroventral cochlear nucleus: PST histograms and regularity analysis. J Neurophysiol 62:1303–1329

    PubMed  CAS  Google Scholar 

  • Bourk TR (1976) Electrical responses of neural units in the anteroventral cochlear nucleus of the cat. PhD thesis, MIT, Cambridge

    Google Scholar 

  • Dunai L, Hartmann WM (2011) Frequency dependence of the interaural time difference thresholds in human listeners. J Acoust Soc Am 129:2485

    Article  Google Scholar 

  • Godfrey DA, Kiang NYS, Norris BE (1975) Single unit activity in the posteroventral cochlear nucleus of the cat. J Comp Neurol 162:247–268

    Article  PubMed  CAS  Google Scholar 

  • Goldberg JM, Brown PB (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 22:613–636

    Google Scholar 

  • Goldberg JM, Brownell WE (1973) Discharge characteristics of neurons in anteroventral and ­dorsal cochlear nuclei of cat. Brain Res 64:35–54

    Article  PubMed  CAS  Google Scholar 

  • Grothe B, Pecka M, McAlpine D (2010) Mechanisms of sound localization in mammals. Physiol Rev 90:983–1012

    Article  PubMed  CAS  Google Scholar 

  • Ivarsson C, De Ribaupierre Y, De Ribaupierre F (1988) Influence of auditory localization cues on neuronal activity in the auditory thalamus of the cat. J Neurophysiol 59:586–606

    PubMed  CAS  Google Scholar 

  • Jackson LL, Heffner HE, Heffner RS (1996) Species differences in the upper limit of binaural phase discrimination. Assoc Res Otolaryngol Abs 19:63

    Google Scholar 

  • Johnson DH (1980) The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. J Acoust Soc Am 68:1115–1122

    Article  PubMed  CAS  Google Scholar 

  • Joris PX (2003) Interaural time sensitivity dominated by cochlea-induced envelope patterns. J Neurosci 23:6345–6350

    PubMed  CAS  Google Scholar 

  • Joris PX, Smith PH (2008) The volley theory and the spherical cell puzzle. Neuroscience 154:65–76

    Article  PubMed  CAS  Google Scholar 

  • Joris P, Smith P (2011) Octopus cells: the temporally most precise neurons in the brain? Assoc Res Otolaryngol Abs 34:227

    Google Scholar 

  • Joris PX, Yin TC (1995) Envelope coding in the lateral superior olive. I. Sensitivity to interaural time differences. J Neurophysiol 73:1043–1062

    PubMed  CAS  Google Scholar 

  • Joris PX, Carney LH, Smith PH, Yin TC (1994a) Enhancement of neural synchronization in the anteroventral cochlear nucleus. I. Responses to tones at the characteristic frequency. J Neurophysiol 71:1022–1036

    PubMed  CAS  Google Scholar 

  • Joris PX, Smith PH, Yin TC (1994b) Enhancement of neural synchronization in the anteroventral cochlear nucleus. II. Responses in the tuning curve tail. J Neurophysiol 71:1037–1051

    PubMed  CAS  Google Scholar 

  • Klumpp RG, Eady HR (1956) Some measurements of interaural time difference thresholds. J Acoust Soc Am 28:859–860

    Article  Google Scholar 

  • Kulesza RJ Jr (2007) Cytoarchitecture of the human superior olivary complex: medial and lateral superior olive. Hear Res 225:80–90

    Article  PubMed  Google Scholar 

  • Kulesza RJ Jr (2008) Cytoarchitecture of the human superior olivary complex: nuclei of the trapezoid body and posterior tier. Hear Res 241:52–63

    Article  PubMed  Google Scholar 

  • Kuwada S, Yin TCT, Syka J, Buunen TJF, Wickesberg RE (1984) Binaural interaction in low-frequency neurons in inferior colliculus of the cat. IV. Comparison of monaural and binaural response properties. J Neurophysiol 51:1306–1325

    PubMed  CAS  Google Scholar 

  • Licklider JCR, Webster JC, Hedlun JM (1950) On the frequency limits of binaural beats. J Acoust Soc Am 22:468–473

    Article  Google Scholar 

  • Louage DH, van der Heijden M, Joris PX (2004) Temporal properties of responses to broadband noise in the auditory nerve. J Neurophysiol 91:2051–2065

    Article  PubMed  Google Scholar 

  • Melcher JR (1993) The cellular generators of the brainstem auditory evoked potential. PhD thesis, MIT, Cambridge

    Google Scholar 

  • Moore JK (1987) The human auditory brain stem as a generator of auditory evoked potentials. Hear Res 29:33–43

    Article  PubMed  CAS  Google Scholar 

  • Moore JK, Moore RY (1971) A comparative study of the superior olivary complex in the primate brain. Folia Primatol 16:35–51

    Article  PubMed  CAS  Google Scholar 

  • Moore JK, Osen KK (1979) The cochlear nuclei in man. Am J Anat 154:393–418

    Article  PubMed  CAS  Google Scholar 

  • Nadol JB Jr (1983) Serial section reconstruction of the neural poles of hair cells in the human organ of Corti. I. Inner hair cells. Laryngoscope 93:599–614

    Article  PubMed  Google Scholar 

  • Perrott DR, Musicant AD (1977) Rotating tones and binaural beats. J Acoust Soc Am 61:1288–1292

    Article  PubMed  CAS  Google Scholar 

  • Reale RA, Brugge JF (1990) Auditory cortical neurons are sensitive to static and continuously changing interaural phase cues. J Neurophysiol 64:1247–1260

    PubMed  CAS  Google Scholar 

  • Rhode WS, Smith PH (1986) Encoding timing and intensity in the ventral cochlear nucleus of the cat. J Neurophysiol 56:261–286

    PubMed  CAS  Google Scholar 

  • Richter EA, Norris BE, Fullerton BC, Levine RA, Kiang NYS (1983) Is there a medial nucleus of the trapezoid body in humans. Am J Anat 168:157–166

    Article  PubMed  CAS  Google Scholar 

  • Ridgway SH (2000) The auditory central nervous system of dolphins. In: Au WWL, Popper AN, Fay RR (eds) Hearing by whales and dolphins, Springer Handbook of Auditory Research. Springer, New York, pp 273–293

    Chapter  Google Scholar 

  • Rose JE, Gross NB, Geisler CD, Hind JE (1966) Some neural mechanisms in the inferior colliculus of the cat which may be relevant to localization of a sound source. J Neurophysiol 29:288–314

    PubMed  CAS  Google Scholar 

  • Rose JE, Brugge JF, Anderson DJ, Hind JE (1967) Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. J Neurophysiol 30:769–793

    PubMed  CAS  Google Scholar 

  • Rose JE, Brugge JF, Anderson DJ, Hind JE (1968) Patterns of activity in single auditory nerve fibres of the squirrel monkey. In: de Reuck AVS, Knight J (eds) Ciba foundation symposium on hearing mechanisms in vertebrates. J&A Churchill, London, pp 144–157

    Google Scholar 

  • Ryugo DK, Rouiller EM (1988) Central projections of intracellularly labeled auditory nerve fibers in cats: morphometric correlations with physiological properties. J Comp Neurol 271:130–142

    Article  PubMed  CAS  Google Scholar 

  • Schiano JL, Trahiotis C, Bernstein LR (1986) Lateralization of low-frequency tones and narrow bands of noise. J Acoust Soc Am 79:1563–1570

    Article  PubMed  CAS  Google Scholar 

  • Sento S, Ryugo DK (1989) Endbulbs of held and spherical bushy cells in cats: morphological correlates with physiological properties. J Comp Neurol 280:553–562

    Article  PubMed  CAS  Google Scholar 

  • Smith PH, Massie A, Joris PX (2005) Acoustic stria: anatomy of physiologically characterized cells and their axonal projection patterns. J Comp Neurol 482:349–371

    Article  PubMed  Google Scholar 

  • Spirou GA, May BJ, Wright DD, Ryugo DK (1993) Frequency organization of the dorsal cochlear nucleus in cats. J Comp Neurol 329:36–52

    Article  PubMed  CAS  Google Scholar 

  • Tollin DJ, Yin TC (2005) Interaural phase and level difference sensitivity in low-frequency neurons in the lateral superior olive. J Neurosci 25:10648–10657

    Article  PubMed  CAS  Google Scholar 

  • Wakeford OS, Robinson DE (1974) Lateralization of tonal stimuli by the cat. J Acoust Soc Am 55:649–652

    Article  PubMed  CAS  Google Scholar 

  • Weiss TF, Rose C (1988) A comparison of synchronization filters in different auditory receptor organs. Hear Res 33:175–180

    Article  PubMed  CAS  Google Scholar 

  • Yin TCT, Chan JK (1990) Interaural time sensitivity in medial superior olive of cat. J Neurophysiol 64:465–488

    PubMed  CAS  Google Scholar 

  • Yin TCT, Kuwada S (1983) Binaural interaction in low-frequency neurons in inferior colliculus of the cat. II. Effects of changing rate and direction of interaural phase. J Neurophysiol 50:1000–1018

    PubMed  CAS  Google Scholar 

  • Young ED, Oertel D (2004) Cochlear nucleus. In: Shepherd GM (ed) The synaptic organization of the brain. Oxford University Press, Oxford, pp 125–163

    Chapter  Google Scholar 

  • Zwislocki J, Feldman RS (1956) Just noticeable differences in dichotic phase. J Acoust Soc Am 28:860–864

    Article  Google Scholar 

Download references

Acknowledgments

The authors are supported by the Fund for Scientific Research – Flanders (G.0714.09 and G.0961.11) and Research Fund K. U. Leuven (OT/09/50).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip X. Joris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Joris, P.X., Verschooten, E. (2013). On the Limit of Neural Phase Locking to Fine Structure in Humans. In: Moore, B., Patterson, R., Winter, I., Carlyon, R., Gockel, H. (eds) Basic Aspects of Hearing. Advances in Experimental Medicine and Biology, vol 787. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1590-9_12

Download citation

Publish with us

Policies and ethics