Skip to main content

Mechanisms for Acute Changes in Sensory Maps

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 508))

Abstract

Many studies have examined changes in the topographic representations of the special senses in cerebral cortex following partial peripheral deafferentations. This approach has demonstrated the short-medium-and long-term aspects of plasticity. However, the extensive capacity for immediate plasticity, while first demonstrated more than 15 years ago, still challenges explanation. What such studies indicate is that each locus in sensory cortex receives viable input from a far wider area of the sensory epithelium than is represented in the normal receptive field, with the implication that much of this input is normally inhibited. Consideration of the geometric and temporal aspects of receptive field plasticity suggests that this inhibition must be tonic and must derive its driving input from a tonically active periphery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albus, K., 1975, A quantitative study of the projection area of the central and the paracentral visual field in area 17 of the cat I, The precision of the topographyExperimental Brain Research24, 159–179.

    Article  CAS  Google Scholar 

  • Byrne, J. A., and Calford, M. B., 1991, Short-term expansion of receptive fields in rat primary somatosensory cortex after hindpaw digit denervationBrain Research565, 218–224.

    Article  PubMed  CAS  Google Scholar 

  • Calford, M. B., Rajan, R., and Irvine, D. R. F., 1993, Rapid changes in the frequency tuning of neurons in cat auditory cortex resulting from pure-tone-induced temporal threshold shiftNeuroscience55, 953–964.

    Article  PubMed  CAS  Google Scholar 

  • Calford, M. B., Schmid, L. M., and Rosa, M. G. P., 1999, Monocular focal retinal lesions induce short-term topographic plasticity in adult visual cortexProceedings of the Royal Society of London. Series B:Biological Sciences266,499–507.

    Article  CAS  Google Scholar 

  • Calford, M. B., and Semple, M. N., 1995, Monaural inhibition in cat auditory-cortexJournal of Neurophysiology73, 1876–1891.

    PubMed  CAS  Google Scholar 

  • Calford, M. B., and Tweedale, R., 1988, Immediate and chronic changes in responses of somatosensory cortex in adult flying-fox after digit amputationNature332, 446–448.

    Article  PubMed  CAS  Google Scholar 

  • Calford, M. B., and Tweedale, R., 1990, Interhemispheric transfer of plasticity in the cerebral cortexScience249, 805–807.

    Article  PubMed  CAS  Google Scholar 

  • Calford, M. B., and Tweedale, R., 1991a, Acute changes in cutaneous receptive fields in primary somatosensory cortex after digit denervation in adult flying foxJournal of Neurophysiology65, 178–187.

    PubMed  CAS  Google Scholar 

  • Calford, M. B., and Tweedale, R., 1991b, Immediate expansion of receptive fields of neurons in area 3b of macaque monkeys after digit denervationSomatosensory and Motor Research8, 249–260.

    Article  PubMed  CAS  Google Scholar 

  • Calford, M. B., Wang, C., Taglianetti, V., Waleszczyk, W. J., Burke, W., and Dreher, B., 2000, Plasticity in adult cat visual cortex, area 17) following circumscribed monocular lesions of all retinal layersJournal of Physiology524, 587–602.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, B., and Stone, L. S., 1996, Turning a blind eye to cortical receptive fieldsNeuron16, 9–12.

    Article  PubMed  CAS  Google Scholar 

  • Chu, Y., Humphrey, M. F., Alder, V. V., and Constable, I. J., 1998, Immunocytochemical localization of basic fibroblast growth factor and glial fibrillary acidic protein after laser photocoagulation in the Royal College of Surgeons ratAustralian and New Zealand Journal of Ophthalmology.26, 87–96.

    PubMed  CAS  Google Scholar 

  • Darlan-Smith, C., and Gilbert, C. D., 1994, Axonal sprouting accompanies functional reorganization in adult cat striate cortexNature368, 737–40.

    Article  Google Scholar 

  • DeAngelis, G. C., Anzai, A., Ohzawa, I., and Freeman, R. D., 1995, Receptive field structure in the visual cortex: does selective stimulation induce plasticity?Proceedings of the National Academy of Sciences of the United States of America92, 9682–9686.

    Article  PubMed  CAS  Google Scholar 

  • Doetsch, G. S., Harrison, T. A., MacDonald, A. C., and Litaker, M. S., 1996, Short-term plasticity in primary somatosensory cortex of the rat: rapid changes in magnitudes and latencies of neuronal responses following digit denervationExperimental Brain Research112, 505–512.

    Article  CAS  Google Scholar 

  • Dreher, B., Burke, W., and Calford, M. B., 2001, Cortical plasticity revealed by circumscribed retinal lesions or artificial scotomasProgress in Brain Research134, in press.

    Google Scholar 

  • Dunn-Meynell, A. A., Benowitz, L. I., and Levin, B. E., 1992, Vibrissectomy induced changes in GAP-43 immunoreactivity in the adult rat barrel cortexJournal of Comparative Neurology315, 160–170.

    Article  PubMed  CAS  Google Scholar 

  • Dykes, R. W., 1990, Acetylcholine and neuronal plasticity in somatosensory cortex, in:Brain Cholinergie Systems, Steriade, M., Biesold, D., eds., Oxford University Press, New York, pp. 294–313.

    Google Scholar 

  • Dykes, R. W., and Craig, A. D., 1998, Control of size and excitability of mechanosensory receptive fields in dorsal column nuclei by homolateral dorsal horn neurons, Journal of Neurophysiology80120–129.

    PubMed  CAS  Google Scholar 

  • Favorov, O., and Whitsel, B. L., 1988a, Spatial organization of the peripheral input to area 1 cell columns. I. the detection of ‘segregates’Brain Research Reviews.113, 25–42.

    Article  Google Scholar 

  • Favorov, O., and Whitsel, B. L., 1988b, Spatial organization of the peripheral input to area 1 cell columns. II. the forelimb representation achieved by a mosaic of segregatesBrain Research Reviews,113, 43–56.

    Article  Google Scholar 

  • Favorov, O. V., and Diamond, M. E., 1990, Demonstration of discrete place-defined columns - segregates – in the cat SIJournal of Comparative Neurology298, 97–112.

    Article  PubMed  CAS  Google Scholar 

  • Favorov O. V., Diamond M. E., Whitsel B. L., 1987, Evidence for a mosaic representation of the body surface in area 3b of the somatic cortex of catProceedings of the National Academy of Sciences of the United States of America84, 6606–6610.

    Article  PubMed  CAS  Google Scholar 

  • Fekete, D. M., Rouiller, E. M., Liberman, M. C., and Ryugo, D. K., 1984, The central projections of intracellularly labeled auditory nerve fibers in catsJournal of Comparative Neurology229, 432–450.

    Article  PubMed  CAS  Google Scholar 

  • Fiorani, M., Rosa, M. G. P., Gattass, R., and Rocha-Miranda, C. E., 1992, Dynamic surrounds of receptive fields in primate striate cortex: a physiological basis for perceptual completion?Proceedings of the National Academy of Sciences of the United States of America89, 8547–8551.

    Article  Google Scholar 

  • Fyffe, R. E., Cheema, S. S., and Rustioni, A., 1986, Intracellular staining study of the feline cuneate nucleus. I. Terminal patterns of primary afferent fibersJournal of Neurophysiology56, 1268–1283.

    PubMed  CAS  Google Scholar 

  • Garraghty, P. E., and Muja, N., 1996, NMDA receptors and plasticity in adult primate somatosensory cortexJournal of Comparative Neurology367, 319–326.

    Article  PubMed  CAS  Google Scholar 

  • Glazewski, S., and Fox, K., 1996, Time course of experience-dependent synaptic potentiation and depression in barrel cortex of adolescent ratsJournal of Neurophysiology 75,1714–1729.

    PubMed  CAS  Google Scholar 

  • Halligan, P. W., Marshall, J. C., Wade, D. T., Davey, J., and Morrison, D., 1993, Thumb in cheek? Sensory reorganization and perceptual plasticity after limb amputationNeuroreport4, 233–236.

    Article  PubMed  CAS  Google Scholar 

  • Henry, G. H., Bishop, P. 0., and Coombs, J. S., 1969, Inhibitory and sub-liminal excitatory receptive fields of simple units in cat striate cortexVision Research9, 1289–1296.

    CAS  Google Scholar 

  • Humphrey, M. F., Chu, Y., Mann, K., and Rakoczy, P., 1997, Retinal GFAP and bFGF expression after multiple argon laser photocoagulation injuries assessed by both immunoreactivity and mRNA levelsExperimental Eye Research64, 361–369.

    Article  PubMed  CAS  Google Scholar 

  • Kano, M., Lino, K., and Kano, M., 1991, Functional reorganization of adult cat somatosensory cortex is dependent upon NMDA receptorsNeuroreport2, 77–80.

    Article  PubMed  CAS  Google Scholar 

  • Kapadia, M. K., Gilbert, C. D., and Westheimer, G., 1994, A quantitative measure for short-term cortical plasticity in human visionJournal of Neuroscience14, 451–457.

    PubMed  CAS  Google Scholar 

  • Katz, D. B., Simon, S. A., Moody, A., and Nicolelis, M. A. L., 1999, Simultaneous reorganization in thalamocortical ensembles evolves over several hours after perioral capsaicin injectionsJournal of Neurophysiology82, 963–977.

    PubMed  CAS  Google Scholar 

  • Kolarik, R. C., Rasey, S. K., and Wall, J. T., 1994, The consistency, extent, and locations of early-onset changes in cortical nerve dominance aggregates following injury of nerves to primate handsJournal Neuroscience, 14, 4269–4288.

    CAS  Google Scholar 

  • Kossut, M., and Juliano, S. L., 1999, Anatomical correlates of representational map reorganization induced by partial vibrissectomy in the barrel cortex of adult miceNeuroscience92, 807–817.

    Article  PubMed  CAS  Google Scholar 

  • Kuffler S. W., 1953, Discharge patterns and functional organization of the mammalian retinaJournal of Neurophysiology16, 37–68.

    PubMed  CAS  Google Scholar 

  • Laskawi, R., Rohlmann, A., Landgrebe, M., and Wolff, J. R., 1997, Rapid astroglial reactions in the motor cortex of adult rats following peripheral facial nerve lesionsEuropean Archives of Oto-RhinoLaryngology254, 81–85.

    Article  CAS  Google Scholar 

  • Laskin, S. E., and Spencer, W. A., 1979, Cutaneous masking. II. Geometry of excitatory and inhibitory receptive fields of single units in somatosensory cortex of thecat Journal of Neurophysiology42, 1061–1082.

    PubMed  CAS  Google Scholar 

  • Liberman, M. C., 1991, Central projections of auditory-nerve fibers of differing spontaneous rate. I. Anteroventral cochlear nucleusJournal Comparative Neurology313, 240–258.

    Article  CAS  Google Scholar 

  • Liberman, M. C., 1993, Central projections of auditory nerve fibers of differing spontaneous rate, II: Posteroventral and dorsal cochlear nucleiJournal of Comparative Neurology327, 17–36.

    Article  PubMed  CAS  Google Scholar 

  • Liberman, M. C., and Dodds, L. W., 1984, Single-neuron labeling and chronic cochlear pathology. II. Stereocilia damage and alterations of spontaneous discharge ratesHearing Research16, 43–53.

    Article  PubMed  CAS  Google Scholar 

  • Melzack, R., 1990, Phantom limbs and the concept of a neuromatrixTrends in Neuroscience13, 88–92.

    Article  CAS  Google Scholar 

  • Merzenich, M. M., Kaas, J. H., Wall, J. T., Sur, M., Nelson, R. J., and Felleman, D. J., 1983, Progression of change following median nerve section in the cortical representation of the hand in areas 3b and 1 in adult owl and squirrel monkeysNeuroscience10, 639–665.

    Article  PubMed  CAS  Google Scholar 

  • Michaelis, M., Liu, X., and Jänig, W., 2000, Axotomized and intact muscle afferents but no skin afferents develop ongoing discharges of dorsal root ganglion origin after peripheral nerve lesionJournal of Neuroscience20, 2742–2748.

    PubMed  CAS  Google Scholar 

  • Mountcastle, V. B., and Powell, T. P., 1959, Neural mechanisms subserving cutaneous sensibility, with special reference to the role of afferent inhibition in sensory perception and discriminationBulletin of the Johns Hopkins Hospital105, 201–232.

    PubMed  CAS  Google Scholar 

  • Nussbaumer, J. C., and Wall, P. D., 1985, Expansion of receptive fields in the mouse cortical barrelfield after administration of capsaicin to neonates or local application on the infraorbital nerve in adultsBrain Research360, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Pettet, M. W., and Gilbert, C. D., 1992, Dynamic changes in receptive-field size in cat primary visual cortexProceedings of the National Academy of Sciences of the United States of America89, 8366–8379.

    Article  PubMed  CAS  Google Scholar 

  • Pettit, M. J., and Schwark, H. D., 1996, Capsaicin-induced rapid receptive field reorganization in cuneate neuronsJournal of Neurophysiology 75 1117–1125.

    PubMed  CAS  Google Scholar 

  • Phillips D. P., Semple M. N., Calford M. B., Kitzes L. M., 1994, Level-dependent representation of stimulus frequency in cat primary auditory cortexExperimental Brain Research102, 210–226.

    Article  CAS  Google Scholar 

  • Rajan, R., 1998, Receptor organ damage causes loss of cortical surround inhibition without topographic map plasticityNature Neuroscience 1,138–143.

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran, V. S., Stewart, M., and Rogers-Ramachandran, D. C., 1992, Perceptual correlates of massive cortical reorganizationNeuroreport3, 583–586.

    Article  PubMed  CAS  Google Scholar 

  • Rasmusson, D. D., Louw, D. F., and Northgrave, S. A., 1993, The immediate effects of peripheral denervation on inhibitory mechanisms in the somatosensory thalamusSomatosensory and Motor Research,10, 69–80.

    Article  PubMed  CAS  Google Scholar 

  • Schmid, L. M., Rosa, M. G. P., and Calford, M. B., 1995, Retinal-detachment induces massive immediate reorganization in visual cortexNeuroreport,6, 1349–1353.

    Article  PubMed  CAS  Google Scholar 

  • Schmid, L. M., Rosa, M. G. P., Calford, M. B., and Ambler, J. S., 1996, Visuotopic reorganization in the primary visual cortex of adult cats following monocular and binocular retinal lesionsCerebral Cortex6, 388–405.

    Article  PubMed  CAS  Google Scholar 

  • Smits, E., Gordon, D. C., Witte, S., Rasmusson, D. D., and Zarzecki, P., 1991, Synaptic potentials evoked by convergent somatosensory and corticocortical inputs in raccoon somatosensory cortex: substrates for plasticityJournal of Neurophysiology66, 688–695.

    PubMed  CAS  Google Scholar 

  • Snyder, R. L., and Sinex, D., 1998, Tonotopic reorganization of cat primary auditory cortex, AI) after acute lesions of restricted sectors of the spiral ganglionSociety for Neurosciences Abstract24, 904.

    Google Scholar 

  • Snyder, R. L., Sinex, D. G., McGee, J. D., and Walsh, E. W., 2000, Acute spiral ganglion lesions change the tuning and tonotopic organization of cat inferior colliculus neuronsHearing Research147, 200–220.

    Article  PubMed  CAS  Google Scholar 

  • Tassignon, M. J., Stempels, N., Nguyen, L. J., De Wilde, F., and Brihaye, M., 1991, The effect of wavelength on glial fibrillary acidic protein immunoreactivity in laser-induced lesions in rabbitretina Graefes Archive for Clinical and Experimental Ophthalmolog229, 380–388.

    Article  CAS  Google Scholar 

  • Turnbull, B. G., and Rasmusson, D. D., 1991, Chronic effects of total or partial digit denervation on raccoon somatosensory cortexSomatosensory and Motor Research8, 201–213.

    Article  PubMed  CAS  Google Scholar 

  • Wall J. T., Cusick C. G., 1986, The representation of peripheral nerve inputs in the S-1 hindpaw cortex of rats raised with incompletely innervated hindpawsJournal of Neuroscience6, 1129–1147.

    PubMed  CAS  Google Scholar 

  • Webster, H. H., Hanisch, U. K., Dykes, R. W., and Biesold, D., 1991a, Basal forebrain lesions with or without reserpine injection inhibit cortical reorganization in rat hindpaw primary somatosensory cortex following sciatic nerve sectionSomatosensory and Motor Research8, 327–346.

    Article  CAS  Google Scholar 

  • Webster, H. H., Rasmusson, D. D., Dykes, R. W., Schliebs, R., Schober, W., Bruckner, G., and Biesold, D., 1991b, Long-term enhancement of evoked potentials in raccoon somatosensory cortex following co-activation of the nucleus basalis of Meynert complex and cutaneous receptorsBrain Research545, 292–296.

    Article  CAS  Google Scholar 

  • Xing, J., and Gerstein, G. L., 1994, Simulation of dynamic receptive-fields in primary visual-cortexVision Research, 34, 1901–1911.

    CAS  Google Scholar 

  • Yamamoto, C., Ogata, N., Yi, X., Takahashi, K., Miyashiro, M., Yamada, H., Uyama, M., and Matsuzaki, K., 1996, Immunolocalization of basic fibroblast growth factor during wound repair in rat retina after laser photocoagulationGraefes Archive for Clinical and Experimental Ophthalmology234, 695–702.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Calford, M.B. (2002). Mechanisms for Acute Changes in Sensory Maps. In: Gandevia, S.C., Proske, U., Stuart, D.G. (eds) Sensorimotor Control of Movement and Posture. Advances in Experimental Medicine and Biology, vol 508. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0713-0_51

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0713-0_51

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5206-8

  • Online ISBN: 978-1-4615-0713-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics