Skip to main content

Cicerone: stereotactic neurophysiological recording and deep brain stimulation electrode placement software system

  • Chapter
Book cover Operative Neuromodulation

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 97/2))

Abstract

Stereotactic neurosurgery and neurophysiological microelectrode recordings in both humans and monkeys are typically done with conventional 2D atlases and paper records of the stereotactic coordinates. This approach is prone to error because the brain size, shape, and location of subcortical structures can vary between subjects. Furthermore, paper record keeping is inefficient and limits opportunities for data visualization. To address these limitations, we developed a software tool (Cicerone) that enables interactive 3D visualization of co-registered magnetic resonance images (MRI), computed tomography (CT) scans, 3D brain atlases, neurophysiological microelectrode recording (MER) data, and deep brain stimulation (DBS) electrode(s) with the volume of tissue activated (VTA) as a function of the stimulation parameters. The software can be used in pre-operative planning to help select the optimal position on the skull for burr hole (in humans) or chamber (in monkeys) placement to maximize the likelihood of complete microelectrode and DBS coverage of the intended anatomical target. Intra-operatively, Cicerone allows entry of the stereotactic microdrive coordinates and MER data, enabling real-time interactive visualization of the electrode location in 3D relative to the surrounding neuroanatomy and neurophysiology. In addition, the software enables prediction of the VTA generated by DBS for a range of electrode trajectories and tip locations. In turn, the neurosurgeon can use the combination of anatomical (MRI/CT/3D brain atlas), neurophysiological (MER), and electrical (DBS VTA) data to optimize the placement of the DBS electrode prior to permanent implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bookstein FL (1990) Morphometrics. In: Toga AW (ed) Three-dimensional neuroimaging. Raven Press, New York

    Google Scholar 

  2. Benabid AL (2003) Deep brain stimulation for Parkinson’s disease. Curr Opin Neurobiol 13: 696–706

    Article  PubMed  CAS  Google Scholar 

  3. Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J (1987) Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol 50: 344–346

    Article  PubMed  CAS  Google Scholar 

  4. Butson CR, Maks CB, McIntyre CC (2006) Sources and effects of electrode impedance during deep brain stimulation. Clin Neurophysiol 117: 447–454

    Article  PubMed  Google Scholar 

  5. Butson CR, McIntyre CC (2005) Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation. Clin Neurophysiol 116: 2490–2500

    Article  PubMed  Google Scholar 

  6. Butson CR, McIntyre CC (2006) Role of electrode design on the volume of tissue activated during deep brain stimulation. J Neural Eng 3: 1–8

    Article  PubMed  Google Scholar 

  7. D’Haese PF, Cetinkaya E, Konrad PE, Kao C, Dawant BM (2005) Computer-aided placement of deep brain stimulators: from planning to intraoperative guidance. IEEE Trans Med Imaging 24: 1469–1478

    Article  PubMed  Google Scholar 

  8. Elder CM, Hashimoto T, Zhang J, Vitek JL (2005) Chronic implantation of deep brain stimulation leads in animal models of neurological disorders. J Neurosci Methods 142: 11–16

    Article  PubMed  Google Scholar 

  9. Finnis KW, Starreveld YP, Parrent AG, Sadikot AF, Peters TM (2003) Three-dimensional database of subcortical electrophysiology for image-guided stereotactic functional neurosurgery. IEEE Trans Med Imaging 22: 93–104

    Article  PubMed  Google Scholar 

  10. Gibson V, Peifer J, Gandy M, Robertson S, Mewes K (2003) 3D visualization methods to guide surgery for Parkinson’s disease. Stud Health Technol Inform 94: 86–92

    PubMed  Google Scholar 

  11. Gironell A, Amirian G, Kulisevsky J, Molet J (2005) Usefulness of an intraoperative electrophysiological navigator system for subthalamic nucleus surgery in Parkinson’s disease. Stereotact Funct Neurosurg 83: 101–107

    Article  PubMed  Google Scholar 

  12. Hamani C, Richter EO, Andrade-Souza Y, Hutchison W, Saint-Cyr JA, Lozano AM (2005) Correspondence of microelectrode mapping with magnetic resonance imaging for subthalamic nucleus procedures. Surg Neurol 63: 249–253

    Article  PubMed  Google Scholar 

  13. Hariz MI, Fodstad H (1999) Do microelectrode techniques increase accuracy or decrease risks in pallidotomy and deep brain stimulation? A critical review of the literature. Stereotact Funct Neurosurg 72: 157–169

    Article  PubMed  CAS  Google Scholar 

  14. Hashimoto T, Elder CM, Okun MS, Patrick SK, Vitek JL (2003) Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci 23: 1916–1923

    PubMed  CAS  Google Scholar 

  15. Housepian EM (2004) Stereotactic surgery: the early years. Neurosurgery 55: 1210–1214

    Article  PubMed  Google Scholar 

  16. Lehman RM, Micheli-Tzanakou E, Zheng J, Hamilton JL (1999) Electrophysiological recordings in pallidotomy localized to 3D stereoscopic imaging. Stereotact Funct Neurosurg 72: 185–191

    Article  PubMed  CAS  Google Scholar 

  17. Laitinen LV (1985) CT-guided ablative stereotaxis without ventriculography. Appl Neurophysiol 48: 18–21

    Article  PubMed  CAS  Google Scholar 

  18. Magnin M, Jetzer U, Morel A, Jeanmonod D (2001) Microelectrode recording and macrostimulation in thalamic and subthalamic MRI guided stereotactic surgery. Neurophysiol Clin 31: 230–238

    Article  PubMed  CAS  Google Scholar 

  19. Martin RF, Bowden DM (2000) Primate brain maps: structure of the macaque brain. Elsevier, Amsterdam

    Google Scholar 

  20. McIntyre CC, Mori S, Sherman DL, Thakor NV, Vitek JL (2004) Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clin Neurophysiol 115: 589–595

    Article  PubMed  Google Scholar 

  21. Nowinski WL, Belov D (2003) The Cerefy Neuroradiology Atlas: a Talairach-Tournoux atlas-based tool for analysis of neuroimages available over the internet. Neuroimage 20: 50–57

    Article  PubMed  Google Scholar 

  22. Patel NK, Heywood P, O’Sullivan K, Love S, Gill SS (2002) MRI-directed subthalamic nucleus surgery for Parkinson’s disease. Stereotact Funct Neurosurg 78: 132–145

    Article  PubMed  Google Scholar 

  23. Priori A, Egidi M, Pesenti A, Rohr M, Rampini P, Locatelli M, Tamma F, Caputo E, Chiesa V, Barbieri S (2003) Do intraoperative microrecordings improve subthalamic nucleus targeting in stereotactic neurosurgery for Parkinson’s disease? J Neurosurg Sci 47: 56–60

    PubMed  CAS  Google Scholar 

  24. Richter EO, Hoque T, Halliday W, Lozano AM, Saint-Cyr JA (2004) Determining the position and size of the subthalamic nucleus based on magnetic resonance imaging results in patients with advanced Parkinson disease. J Neurosurg 100: 541–546

    Article  PubMed  Google Scholar 

  25. Romanelli P, Heit G, Hill BC, Kraus A, Hastie T, Bronte-Stewart HM (2004) Microelectrode recording revealing a somatotopic body map in the subthalamic nucleus in humans with Parkinson disease. J Neurosurg 100: 611–618

    PubMed  Google Scholar 

  26. Starr PA (2002) Placement of deep brain stimulators into the subthalamic nucleus or globus pallidus internus: technical approach. Stereotact Funct Neurosurg 79: 118–145

    Article  PubMed  Google Scholar 

  27. Starr PA, Vitek JL, DeLong M, Bakay RA (1999) Magnetic resonance imaging-based stereotactic localization of the globus pallidus and subthalamic nucleus. Neurosurgery 44: 303–313

    Article  PubMed  CAS  Google Scholar 

  28. St-Jean P, Sadikot AF, Collins L, Clonda D, Kasrai R, Evans AC, Peters TM (1998) Automated atlas integration and interactive three-dimensional visualization tools for planning and guidance in functional neurosurgery. IEEE Trans Med Imaging 17: 672–680

    Article  PubMed  CAS  Google Scholar 

  29. Teijeiro J, Macias RJ, Morales JM, Guerra E, Lopez G, Alvarez LM, Fernandez F, Maragoto C, Garcia I, Alvarez E (2000) Personal-computer-based system for three-dimensional anatomic-physiological correlations during stereotactic and functional neurosurgery. Stereotact Funct Neurosurg 75: 176–187

    Article  PubMed  CAS  Google Scholar 

  30. Zonenshayn M, Rezai AR, Mogilner AY, Beric A, Sterio D, Kelly PJ (2000) Comparison of anatomic and neurophysiological methods for subthalamic nucleus targeting. Neurosurgery 47: 282–292

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cameron C. McIntyre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this chapter

Cite this chapter

Miocinovic, S., Noecker, A.M., Maks, C.B., Butson, C.R., McIntyre, C.C. (2007). Cicerone: stereotactic neurophysiological recording and deep brain stimulation electrode placement software system. In: Sakas, D.E., Simpson, B.A. (eds) Operative Neuromodulation. Acta Neurochirurgica Supplements, vol 97/2. Springer, Vienna. https://doi.org/10.1007/978-3-211-33081-4_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-33081-4_65

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-33080-7

  • Online ISBN: 978-3-211-33081-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics