Skip to main content

Enteric Neurobiology: Discoveries and Directions

  • Chapter
  • First Online:
Book cover The Enteric Nervous System

Part of the book series: Advances in Experimental Medicine and Biology ((ANS,volume 891))

Abstract

Discovery and documentation of noncholinergic-nonadrenergic neurotransmission in the enteric nervous system started a revolution in mechanisms of neural control of the digestive tract that continues into a twenty-first century era of translational gastroenterology, which is now firmly embedded in the term, neurogastroenterology. This chapter, on Enteric Neurobiology: Discoveries and Directions, tracks the step-by-step advances in enteric neuronal electrophysiology and synaptic behavior and progresses to the higher order functions of central pattern generators, hard wired synaptic circuits and libraries of neural programs in the brain-in-the-gut that underlie the several different patterns of motility and secretory behaviors that occur in the specialized, serially-connected compartments extending from the esophagus to the anus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Athey GR, Cooke AR, Wood JD (1981) Synaptic activation of burst-type myenteric neurons in cat small intestine. Am J Physiol 240:G437–G441

    CAS  PubMed  Google Scholar 

  • Bayliss WM, Starling EH (1899) The movements and innervation of the small intestine. J Physiol 24:99–143

    Google Scholar 

  • Biber B, Fara J (1973) Intestinal motility increased by tetrodotoxin, lidocaine, and procaine. Experientia 29:551–552

    Article  CAS  PubMed  Google Scholar 

  • Bornstein JC, Costa M, Furness JB (1988) Intrinsic and extrinsic inhibitory synaptic inputs to submucous neurones of the guinea-pig small intestine. J Physiol 398:371–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bortoff A, Muller R (1975) Stimulation of intestinal smooth muscle by atropine, procaine, and tetrodotoxin. Am J Physiol 229:1609–1613

    CAS  PubMed  Google Scholar 

  • Bucher D, Taylor AL, Marder E (2006) Central pattern generating neurons simultaneously express fast and slow rhythmic activities in the stomatogastric ganglion. J Neurophysiol 95:3617–3632

    Article  PubMed  Google Scholar 

  • Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581

    CAS  PubMed  Google Scholar 

  • Burnstock G, Campbell G, Bennett M, Holman ME (1964) Innervation of the guinea-pig taenia coli: are there intrinsic inhibitory nerves which are distinct from sympathetic nerves? Int J Neuropharmacol 3:163–166

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G, Campbell G, Rand MJ (1966) The inhibitory innervation of the taenia of the guinea-pig caecum. J Physiol 182:504–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Code CF (1979) The interdigestive housekeeper of the gastrointestinal tract. Perspect Biol Med 22:S49–S55

    Article  Google Scholar 

  • Code CF, Marlett JA (1975) The interdigestive myo-electric complex of the stomach and small bowel of dogs. J Physiol 246:289–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooke HJ, Wang YZ, Rogers R (1993) Coordination of Cl-secretion and contraction by a histamine H2-receptor agonist in guinea pig distal colon. Am J Physiol 265:G973–G978

    CAS  PubMed  Google Scholar 

  • Frieling T, Cooke HJ, Wood JD (1993) Histamine receptors on submucous neurons in guinea pig colon. Am J Physiol 264:G74–G80

    CAS  PubMed  Google Scholar 

  • Frieling T, Cooke HJ, Wood JD (1994a) Neuroimmune communication in the submucous plexus of guinea pig colon after sensitization to milk antigen. Am J Physiol 267:G1087–G1093

    CAS  PubMed  Google Scholar 

  • Frieling T, Palmer JM, Cooke HJ, Wood JD (1994b) Neuroimmune communication in the submucous plexus of guinea pig colon after infection with Trichinella spiralis. Gastroenterology 107:1602–1609

    Article  CAS  PubMed  Google Scholar 

  • Furness JB (2006) The enteric nervous system. Blackwell, Oxford

    Google Scholar 

  • Furness JB, Costa M (1987) The enteric nervous system. Churchill Livingstone, New York

    Google Scholar 

  • Gao C, Liu S, Hu HZ, Gao N, Kim GY, Xia Y, Wood JD (2002) Serine proteases excite myenteric neurons through protease-activated receptors in guinea pig small intestine. Gastroenterology 123:1554–1564

    Article  CAS  PubMed  Google Scholar 

  • Glasgow RE, Mulvihill SJ (2002) Abdominal pain including the acute abdomin. In: Feldman M, Friedman LS, Sleisenger MH (eds) Gastrointestinal and liver disease. Saunders, Philadelphia, pp 71–82

    Google Scholar 

  • Grafe P, Mayer CJ, Wood JD (1979) Evidence that substance P does not mediate slow synaptic excitation within the myenteric plexus. Nature 279:720–721

    Article  CAS  PubMed  Google Scholar 

  • Grundy D, Al-Chaer ED, Aziz Q, Collins SM, Ke M, Tache Y, Wood JD (2006) Fundamentals of neurogastroenterology: basic science. Gastroenterology 130:1391–1411

    Article  CAS  PubMed  Google Scholar 

  • Hirst GD, McKirdy HC (1975) Synaptic potentials recorded from neurones of the submucous plexus of guinea-pig small intestine. J Physiol 249:369–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirst GD, Holman ME, Spence I (1974) Two types of neurones in the myenteric plexus of duodenum in the guinea-pig. J Physiol 236:303–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman JM, McKnight ND, Sharkey KA, Mawe GM (2011) The relationship between inflammation-induced neuronal excitability and disrupted motor activity in the guinea pig distal colon. Neurogastroenterol Motil 23:673-e279

    Article  PubMed  Google Scholar 

  • Hu HZ, Liu S, Gao N, Xia Y, Mostafa R, Ren J, Zafirov DH, Wood JD (2003) Actions of bradykinin on electrical and synaptic behavior of neurones in the myenteric plexus of guinea-pig small intestine. Br J Pharmacol 138:1221–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamath PS, Phillips SF, O’Connor MK, Brown ML, Zinsmeister AR (1990) Colonic capacitance and transit in man: modulation by luminal contents and drugs. Gut 31:443–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katayama Y, North RA (1978) Does substance P mediate slow synaptic excitation within the myenteric plexus? Nature 274:387–388

    Article  CAS  PubMed  Google Scholar 

  • Krauter EM, Strong DS, Brooks EM, Linden DR, Sharkey KA, Mawe GM (2007) Changes in colonic motility and the electrophysiological properties of myenteric neurons persist following recovery from trinitrobenzene sulfonic acid colitis in the guinea pig. Neurogastroenterol Motil 19:990–1000

    CAS  PubMed  Google Scholar 

  • Linden DR, Sharkey KA, Mawe GM (2003) Enhanced excitability of myenteric AH neurones in the inflamed guinea-pig distal colon. J Physiol 547:589–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Hu HZ, Gao N, Gao C, Wang G, Wang X, Peck OC, Kim G, Gao X, Xia Y, Wood JD (2003a) Neuroimmune interactions in guinea pig stomach and small intestine. Am J Physiol Gastrointest Liver Physiol 284:G154–G164

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Hu HZ, Gao C, Gao N, Wang G, Wang X, Gao X, Xia Y, Wood JD (2003b) Actions of cysteinyl leukotrienes in the enteric nervous system of guinea-pig stomach and small intestine. Eur J Pharmacol 459:27–39

    Article  CAS  PubMed  Google Scholar 

  • Lomax AE, Linden DR, Mawe GM, Sharkey KA (2006) Effects of gastrointestinal inflammation on enteroendocrine cells and enteric neural reflex circuits. Auton Neurosci 126–127:250–257

    Article  PubMed  Google Scholar 

  • Lomax AE, O’Hara JR, Hyland NP, Mawe GM, Sharkey KA (2007) Persistent alterations to enteric neural signaling in the guinea pig colon following the resolution of colitis. Am J Physiol Gastrointest Liver Physiol 292:G482–G491

    Article  CAS  PubMed  Google Scholar 

  • Marder E (2000) Motor pattern generation. Curr Opin Neurobiol 10:691–698

    Article  CAS  PubMed  Google Scholar 

  • Marder E (2001) Moving rhythms. Nature 410:755

    Article  CAS  PubMed  Google Scholar 

  • Marder E, Bucher D (2001) Central pattern generators and the control of rhythmic movements. Curr Biol 11:R986–R996

    Article  CAS  PubMed  Google Scholar 

  • Marder E, Rehm KJ (2005) Development of central pattern generating circuits. Curr Opin Neurobiol 15:86–93

    Article  CAS  PubMed  Google Scholar 

  • Marder E, Bucher D, Schulz DJ, Taylor AL (2005) Invertebrate central pattern generation moves along. Curr Biol 15:R685–R699

    Article  CAS  PubMed  Google Scholar 

  • Mawe GM, Strong DS, Sharkey KA (2009) Plasticity of enteric nerve functions in the inflamed and postinflamed gut. Neurogastroenterol Motil 21:481–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemeth PR, Ort CA, Wood JD (1984) Intracellular study of effects of histamine on electrical behaviour of myenteric neurones in guinea-pig small intestine. J Physiol 355:411–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishi S, North RA (1973) Intracellular recording from the myenteric plexus of the guinea-pig ileum. J Physiol 231:471–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • North RA, Surprenant A (1985) Inhibitory synaptic potentials resulting from alpha 2-adrenoceptor activation in guinea-pig submucous plexus neurones. J Physiol 358:17–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nozdrachev AD, Kachalov IP, Gnetov AV (1975) Spontaneous activity of myenteric plexus neurons in the intact rabbit small intestine. Fiziol Zh SSSR Im I M Sechenova 61:725–730

    CAS  PubMed  Google Scholar 

  • Ohkawa H, Prosser CL (1972) Electrical activity in myenteric and submucous plexuses of cat intestine. Am J Physiol 222:1412–1419

    CAS  PubMed  Google Scholar 

  • Sarna SK (1987) Giant migrating contractions and their myoelectric correlates in the small intestine. Am J Physiol 253:G697–G705

    CAS  PubMed  Google Scholar 

  • Spencer NJ, Smith TK (2004) Mechanosensory S-neurons rather than AH-neurons appear to generate a rhythmic motor pattern in guinea-pig distal colon. J Physiol 558:577–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer NJ, Hennig GW, Smith TK (2001) Spatial and temporal coordination of junction potentials in circular muscle of guinea-pig distal colon. J Physiol 535:565–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanghellini V, Camilleri M, Malagelada JR (1987) Chronic idiopathic intestinal pseudo-obstruction: clinical and intestinal manometric findings. Gut 28:5–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starodub AM, Wood JD (2000a) Histamine H(2) receptor activated chloride conductance in myenteric neurons from guinea pig small intestine. J Neurophysiol 83:1809–1816

    CAS  PubMed  Google Scholar 

  • Starodub AM, Wood JD (2000b) Histamine suppresses A-type potassium current in myenteric neurons from guinea pig small intestine. J Pharmacol Exp Ther 294:555–561

    CAS  PubMed  Google Scholar 

  • Tamura K, Wood JD (1992) Effects of prolonged exposure to histamine on guinea pig intestinal neurons. Dig Dis Sci 37:1084–1088

    Article  CAS  PubMed  Google Scholar 

  • Tonini M, Lecchini S, Frigo G, Crema A (1974) Action of tetrodotoxin on spontaneous electrical activity of some smooth muscle preparations. Eur J Pharmacol 29:236–240

    Article  CAS  PubMed  Google Scholar 

  • Wang YZ, Cooke HJ (1990) H2 receptors mediate cyclical chloride secretion in guinea pig distal colon. Am J Physiol 258:G887–G893

    CAS  PubMed  Google Scholar 

  • Weems WA, Seidel ER, Johnson LR (1985) Induction in vitro of a specific pattern of jejunal propulsive behavior by cholecystokinin. Am J Physiol 248:G470–G478

    CAS  PubMed  Google Scholar 

  • Wood JD (1970) Electrical activity from single neurons in Auerbach’s plexus. Am J Physiol 219:159–169

    CAS  PubMed  Google Scholar 

  • Wood JD (1972) Excitation of intestinal muscle by atropine, tetrodotoxin, and xylocaine. Am J Physiol 222:118–125

    CAS  PubMed  Google Scholar 

  • Wood JD (1973) Electrical discharge of single enteric neurons of guinea pig small intestine. Am J Physiol 225:1107–1113

    CAS  PubMed  Google Scholar 

  • Wood JD (1975) Effects of elevated magnesium on discharge of myenteric neurons of cat small bowel. Am J Physiol 229:657–662

    CAS  PubMed  Google Scholar 

  • Wood JD (2004) Enteric neuroimmunophysiology and pathophysiology. Gastroenterology 127:635–657

    Article  CAS  PubMed  Google Scholar 

  • Wood JD (2007a) Effects of bacteria on the enteric nervous system: implications for the irritable bowel syndrome. J Clin Gastroenterol 41(Suppl 1):S7–S19

    Article  PubMed  Google Scholar 

  • Wood JD (2007b) Neuropathophysiology of functional gastrointestinal disorders. World J Gastroenterol 13:1313–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood JD (2008) Enteric nervous system: reflexes, pattern generators and motility. Curr Opin Gastroenterol 24:149–158

    Article  PubMed  Google Scholar 

  • Wood JD (2012) Nonruminant nutrition symposium: neurogastroenterology and food allergies. J Anim Sci 90:1213–1223

    Article  CAS  PubMed  Google Scholar 

  • Wood JD, Harris BR (1972) Phase relationships of the intestinal muscularis: effects of atropine and xylocaine. J Appl Physiol 32:734–737

    CAS  PubMed  Google Scholar 

  • Wood JD, Marsh DR (1973) Effects of atropine, tetrodotoxin and lidocaine on rebound excitation of guinea-pig small intestine. J Pharmacol Exp Ther 184:590–598

    CAS  PubMed  Google Scholar 

  • Wood JD, Mayer CJ (1973) Patterned discharge of six different neurons in a single enteric ganglion. Pflugers Arch 338:247–256

    Article  CAS  PubMed  Google Scholar 

  • Wood JD, Mayer CJ (1978a) Intracellular study of electrical activity of Auerbach’s plexus in guinea-pig small intestine. Pflugers Arch 374:265–275

    Article  CAS  PubMed  Google Scholar 

  • Wood JD, Mayer CJ (1978b) Slow synaptic excitation mediated by serotonin in Auerbach’s plexus. Nature 276:836–837

    Article  CAS  PubMed  Google Scholar 

  • Wood JD, Perkins WE (1970) Mechanical interaction between longitudinal and circular axes of the small intestine. Am J Physiol 218:762–768

    CAS  PubMed  Google Scholar 

  • Wood JD, Liu S, Drossman DA, Ringel Y, Whitehead WE (2012) Anti-enteric neuronal antibodies and the irritable bowel syndrome. J Neurogastroenterol Motil 18:78–85

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jackie D. Wood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wood, J.D. (2016). Enteric Neurobiology: Discoveries and Directions. In: Brierley, S., Costa, M. (eds) The Enteric Nervous System. Advances in Experimental Medicine and Biology(), vol 891. Springer, Cham. https://doi.org/10.1007/978-3-319-27592-5_17

Download citation

Publish with us

Policies and ethics