Skip to main content

Neurotrophin Signalling and Transcription Programmes Interactions in the Development of Somatosensory Neurons

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 220))

Abstract

Somatosensory neurons of the dorsal root ganglia are generated from multipotent neural crest cells by a process of progressive specification and differentiation. Intrinsic transcription programmes active in somatosensory neuron progenitors and early post-mitotic neurons drive the cell-type expression of neurotrophin receptors. In turn, signalling by members of the neurotrophin family controls expression of transcription factors that regulate neuronal sub-type specification. This chapter explores the mechanisms by which this crosstalk between neurotrophin signalling and transcription programmes generates the diverse functional sub-types of somatosensory neurons found in the mature animal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel Samad O, Liu Y, Yang FC, Kramer I, Arber S, Ma Q (2010) Characterization of two Runx1-dependent nociceptor differentiation programs necessary for inflammatory versus neuropathic pain. Mol Pain 6:45

    PubMed  Google Scholar 

  • Abdo H, Li L, Lallemend F, Bachy I, Xu XJ, Rice FL, Ernfors P (2011) Dependence on the transcription factor Shox2 for specification of sensory neurons conveying discriminative touch. Eur J Neurosci 34:1529–1541

    PubMed  Google Scholar 

  • Airaksinen MS, Koltzenburg M, Lewin GR, Masu Y, Helbig C, Wolf E, Brem G, Toyka KV, Thoenen H, Meyer M (1996) Specific subtypes of cutaneous mechanoreceptors require neurotrophin-3 following peripheral target innervation. Neuron 16:287–295

    PubMed  CAS  Google Scholar 

  • Arber S, Ladle DR, Lin JH, Frank E, Jessell TM (2000) ETS gene Er81 controls the formation of functional connections between group Ia sensory afferents and motor neurons. Cell 101:485–498

    PubMed  CAS  Google Scholar 

  • Bachy I, Franck MC, Li L, Abdo H, Pattyn A, Ernfors P (2011) The transcription factor Cux2 marks development of an A-delta sublineage of TrkA sensory neurons. Dev Biol 360:77–86

    PubMed  CAS  Google Scholar 

  • Badea TC, Williams J, Smallwood P, Shi M, Motajo O, Nathans J (2012) Combinatorial expression of Brn3 transcription factors in somatosensory neurons: genetic and morphologic analysis. J Neurosci 32:995–1007

    PubMed Central  PubMed  CAS  Google Scholar 

  • Barembaum M, Bronner-Fraser M (2005) Early steps in neural crest specification. Semin Cell Dev Biol 16:642–646

    PubMed  CAS  Google Scholar 

  • Bourane S, Garces A, Venteo S, Pattyn A, Hubert T, Fichard A, Puech S, Boukhaddaoui H, Baudet C, Takahashi S, Valmier J, Carroll P (2009) Low-threshold mechanoreceptor subtypes selectively express MafA and are specified by Ret signaling. Neuron 64:857–870

    PubMed  CAS  Google Scholar 

  • Buchman VL, Davies AM (1993) Different neurotrophins are expressed and act in a developmental sequence to promote the survival of embryonic sensory neurons. Development 118:989–1001

    PubMed  CAS  Google Scholar 

  • Carr PA, Nagy JI (1993) Emerging relationships between cytochemical properties and sensory modality transmission in primary sensory neurons. Brain Res Bull 30:209–219

    PubMed  CAS  Google Scholar 

  • Carroll P, Lewin GR, Koltzenburg M, Toyka KV, Thoenen H (1998) A role for BDNF in mechanosensation. Nat Neurosci 1:42–46

    PubMed  CAS  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    PubMed  CAS  Google Scholar 

  • Chen ZF, Rebelo S, White F, Malmberg AB, Baba H, Lima D, Woolf CJ, Basbaum AI, Anderson DJ (2001) The paired homeodomain protein DRG11 is required for the projection of cutaneous sensory afferent fibers to the dorsal spinal cord. Neuron 31:59–73

    PubMed  CAS  Google Scholar 

  • Chen AI, de Nooij JC, Jessell TM (2006a) Graded activity of transcription factor Runx3 specifies the laminar termination pattern of sensory axons in the developing spinal cord. Neuron 49:395–408

    PubMed  CAS  Google Scholar 

  • Chen CL, Broom DC, Liu Y, de Nooij JC, Li Z, Cen C, Samad OA, Jessell TM, Woolf CJ, Ma Q (2006b) Runx1 determines nociceptive sensory neuron phenotype and is required for thermal and neuropathic pain. Neuron 49:365–377

    PubMed  CAS  Google Scholar 

  • Conway SJ, Henderson DJ, Copp AJ (1997) Pax3 is required for cardiac neural crest migration in the mouse: evidence from the splotch (Sp2H) mutant. Development 124:505–514

    PubMed  CAS  Google Scholar 

  • Crowley C, Spencer SD, Nishimura MC, Chen KS, Pitts-Meek S, Armanini MP, Ling LH, McMahon SB, Shelton DL, Levinson AD et al (1994) Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell 76:1001–1011

    PubMed  CAS  Google Scholar 

  • Davies AM, Minichiello L, Klein R (1995) Developmental changes in NT3 signalling via TrkA and TrkB in embryonic neurons. EMBO J 14:4482–4489

    PubMed Central  PubMed  CAS  Google Scholar 

  • Delmas P, Hao J, Rodat-Despoix L (2011) Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat Rev Neurosci 12:139–153

    PubMed  CAS  Google Scholar 

  • Dong X, Han S, Zylka MJ, Simon MI, Anderson DJ (2001) A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell 106:619–632

    PubMed  CAS  Google Scholar 

  • Dykes IM, Tempest L, Lee SI, Turner EE (2011) Brn3a and Islet1 act epistatically to regulate the gene expression program of sensory differentiation. J Neurosci 31:9789–9799

    PubMed Central  PubMed  CAS  Google Scholar 

  • Elkabes S, Dreyfus CF, Schaar DG, Black IB (1994) Embryonic sensory development: local expression of neurotrophin-3 and target expression of nerve growth factor. J Comp Neurol 341:204–213

    PubMed  CAS  Google Scholar 

  • ElShamy WM, Ernfors P (1996) A local action of neurotrophin-3 prevents the death of proliferating sensory neuron precursor cells. Neuron 16:963–972

    PubMed  CAS  Google Scholar 

  • Eng SR, Gratwick K, Rhee JM, Fedtsova N, Gan L, Turner EE (2001) Defects in sensory axon growth precede neuronal death in Brn3a-deficient mice. J Neurosci 21:541–549

    PubMed  CAS  Google Scholar 

  • Eng SR, Dykes IM, Lanier J, Fedtsova N, Turner EE (2007) POU-domain factor Brn3a regulates both distinct and common programs of gene expression in the spinal and trigeminal sensory ganglia. Neural Dev 2:3

    PubMed Central  PubMed  Google Scholar 

  • Ernfors P, Lee KF, Kucera J, Jaenisch R (1994) Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents. Cell 77:503–512

    PubMed  CAS  Google Scholar 

  • Ernsberger U (2009) Role of neurotrophin signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia. Cell Tissue Res 336:349–384

    PubMed  CAS  Google Scholar 

  • Farinas I, Yoshida CK, Backus C, Reichardt LF (1996) Lack of neurotrophin-3 results in death of spinal sensory neurons and premature differentiation of their precursors. Neuron 17:1065–1078

    PubMed Central  PubMed  CAS  Google Scholar 

  • Farinas I, Wilkinson GA, Backus C, Reichardt LF, Patapoutian A (1998) Characterization of neurotrophin and Trk receptor functions in developing sensory ganglia: direct NT-3 activation of TrkB neurons in vivo. Neuron 21:325–334

    PubMed Central  PubMed  CAS  Google Scholar 

  • Farinas I, Cano-Jaimez M, Bellmunt E, Soriano M (2002) Regulation of neurogenesis by neurotrophins in developing spinal sensory ganglia. Brain Res Bull 57:809–816

    PubMed  CAS  Google Scholar 

  • Fedtsova NG, Turner EE (1995) Brn-3.0 expression identifies early post-mitotic CNS neurons and sensory neural precursors. Mech Dev 53:291–304

    PubMed  CAS  Google Scholar 

  • Funfschilling U, Ng YG, Zang K, Miyazaki J, Reichardt LF, Rice FL (2004) TrkC kinase expression in distinct subsets of cutaneous trigeminal innervation and nonneuronal cells. J Comp Neurol 480:392–414

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gaese F, Kolbeck R, Barde YA (1994) Sensory ganglia require neurotrophin-3 early in development. Development 120:1613–1619

    PubMed  CAS  Google Scholar 

  • Gascon E, Gaillard S, Malapert P, Liu Y, Rodat-Despoix L, Samokhvalov IM, Delmas P, Helmbacher F, Maina F, Moqrich A (2012) Hepatocyte growth factor-Met signaling is required for Runx1 extinction and peptidergic differentiation in primary nociceptive neurons. J Neurosci 30:12414–12423

    Google Scholar 

  • George L, Kasemeier-Kulesa J, Nelson BR, Koyano-Nakagawa N, Lefcort F (2010) Patterned assembly and neurogenesis in the chick dorsal root ganglion. J Comp Neurol 518:405–422

    PubMed Central  PubMed  CAS  Google Scholar 

  • Goulding MD, Chalepakis G, Deutsch U, Erselius JR, Gruss P (1991) Pax-3, a novel murine DNA binding protein expressed during early neurogenesis. EMBO J 10:1135–1147

    PubMed Central  PubMed  CAS  Google Scholar 

  • Guo T, Mandai K, Condie BG, Wickramasinghe SR, Capecchi MR, Ginty DD (2012) An evolving NGF-Hoxd1 signaling pathway mediates development of divergent neural circuits in vertebrates. Nat Neurosci 14:31–36

    Google Scholar 

  • Han SK, Simon MI (2011) Intracellular signaling and the origins of the sensations of itch and pain. Sci Signal 4:pe38

    CAS  Google Scholar 

  • Hapner SJ, Boeshore KL, Large TH, Lefcort F (1998) Neural differentiation promoted by truncated trkC receptors in collaboration with p75(NTR). Dev Biol 201:90–100

    PubMed  CAS  Google Scholar 

  • Hari L, Brault V, Kleber M, Lee HY, Ille F, Leimeroth R, Paratore C, Suter U, Kemler R, Sommer L (2002) Lineage-specific requirements of beta-catenin in neural crest development. J Cell Biol 159:867–880

    PubMed Central  PubMed  CAS  Google Scholar 

  • Heglind M, Cederberg A, Aquino J, Lucas G, Ernfors P, Enerback S (2005) Lack of the central nervous system- and neural crest-expressed forkhead gene Foxs1 affects motor function and body weight. Mol Cell Biol 25:5616–5625

    PubMed Central  PubMed  CAS  Google Scholar 

  • Heidenreich M, Lechner SG, Vardanyan V, Wetzel C, Cremers CW, De Leenheer EM, Aránguez G, Moreno-Pelayo MÁ, Jentsch TJ, Lewin GR (2012) KCNQ4 K(+) channels tune mechanoreceptors for normal touch sensation in mouse and man. Nat Neurosci 15:138–145

    CAS  Google Scholar 

  • Henion PD, Garner AS, Large TH, Weston JA (1995) trkC-mediated NT-3 signaling is required for the early development of a subpopulation of neurogenic neural crest cells. Dev Biol 172:602–613

    PubMed  CAS  Google Scholar 

  • Hippenmeyer S, Kramer I, Arber S (2004) Control of neuronal phenotype: what targets tell the cell bodies. Trends Neurosci 27:482–488

    PubMed  CAS  Google Scholar 

  • Hjerling-Leffler J, Marmigere F, Heglind M, Cederberg A, Koltzenburg M, Enerback S, Ernfors P (2005) The boundary cap: a source of neural crest stem cells that generate multiple sensory neuron subtypes. Development 132:2623–2632

    PubMed  CAS  Google Scholar 

  • Hu ZL, Shi M, Huang Y, Zheng MH, Pei Z, Chen JY, Han H, Ding YQ (2011) The role of the transcription factor Rbpj in the development of dorsal root ganglia. Neural Dev 6:14

    PubMed Central  PubMed  CAS  Google Scholar 

  • Huang EJ, Wilkinson GA, Farinas I, Backus C, Zang K, Wong SL, Reichardt LF (1999) Expression of Trk receptors in the developing mouse trigeminal ganglion: in vivo evidence for NT-3 activation of TrkA and TrkB in addition to TrkC. Development 126:2191–2203

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ichim G, Tauszig-Delamasure S, Mehlen P (2012) Neurotrophins and cell death. Exp Cell Res 318:1221–1228

    PubMed  CAS  Google Scholar 

  • Inoue K, Ozaki S, Shiga T, Ito K, Masuda T, Okado N, Iseda T, Kawaguchi S, Ogawa M, Bae SC, Yamashita N, Itohara S, Kudo N, Ito Y (2002) Runx3 controls the axonal projection of proprioceptive dorsal root ganglion neurons. Nat Neurosci 5:946–954

    PubMed  CAS  Google Scholar 

  • Inoue K, Ito K, Osato M, Lee B, Bae SC, Ito Y (2007) The transcription factor Runx3 represses the neurotrophin receptor TrkB during lineage commitment of dorsal root ganglion neurons. J Biol Chem 282:24175–24184

    PubMed  CAS  Google Scholar 

  • Jordt SE, McKemy DD, Julius D (2003) Lessons from peppers and peppermint: the molecular logic of thermosensation. Curr Opin Neurobiol 13:487–492

    PubMed  CAS  Google Scholar 

  • Kalcheim C, Carmeli C, Rosenthal A (1992) Neurotrophin 3 is a mitogen for cultured neural crest cells. Proc Natl Acad Sci U S A 89:1661–1665

    PubMed Central  PubMed  CAS  Google Scholar 

  • Karchewski LA, Kim FA, Johnston J, McKnight RM, Verge VM (1999) Anatomical evidence supporting the potential for modulation by multiple neurotrophins in the majority of adult lumbar sensory neurons. J Comp Neurol 413(2):327–341

    PubMed  CAS  Google Scholar 

  • Kim J, Lo L, Dormand E, Anderson DJ (2003) SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron 38:17–31

    PubMed  CAS  Google Scholar 

  • Klein R, Silos-Santiago I, Smeyne RJ, Lira SA, Brambilla R, Bryant S, Zhang L, Snider WD, Barbacid M (1994) Disruption of the neurotrophin-3 receptor gene trkC eliminates la muscle afferents and results in abnormal movements. Nature 368:249–251

    PubMed  CAS  Google Scholar 

  • Kobayashi A, Senzaki K, Ozaki S, Yoshikawa M, Shiga T (2012) Runx1 promotes neuronal differentiation in dorsal root ganglion. Mol Cell Neurosci 49:23–31

    PubMed  CAS  Google Scholar 

  • Kramer I, Sigrist M, de Nooij JC, Taniuchi I, Jessell TM, Arber S (2006) A role for Runx transcription factor signaling in dorsal root ganglion sensory neuron diversification. Neuron 49:379–393

    PubMed  CAS  Google Scholar 

  • Lallemend F, Ernfors P (2012) Molecular interactions underlying the specification of sensory neurons. Trends Neurosci 35:373–381

    PubMed  CAS  Google Scholar 

  • Lallemend F, Sterzenbach U, Hadjab-Lallemend S, Aquino JB, Castelo-Branco G, Sinha I, Villaescusa JC, Levanon D, Wang Y, Franck MC, Kharchenko O, Adameyko I, Linnarsson S, Groner Y, Turner E, Ernfors P (2012) Positional differences of axon growth rates between sensory neurons encoded by Runx3. EMBO J 31:3718–3729

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lanier J, Dykes IM, Nissen S, Eng SR, Turner EE (2009) Brn3a regulates the transition from neurogenesis to terminal differentiation and represses non-neural gene expression in the trigeminal ganglion. Dev Dyn 238:3065–3079

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lechner SG, Frenzel H, Wang R, Lewin GR (2009) Developmental waves of mechanosensitivity acquisition in sensory neuron subtypes during embryonic development. EMBO J 28:1479–1491

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lee HY, Kleber M, Hari L, Brault V, Suter U, Taketo MM, Kemler R, Sommer L (2004) Instructive role of Wnt/beta-catenin in sensory fate specification in neural crest stem cells. Science 303:1020–1023

    PubMed  CAS  Google Scholar 

  • Lee J, Friese A, Mielich M, Sigrist M, Arber S (2012) Scaling proprioceptor gene transcription by retrograde NT3 signaling. PLoS One 7:e45551

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lefcort F, Clary DO, Rusoff AC, Reichardt LF (1996) Inhibition of the NT-3 receptor TrkC, early in chick embryogenesis, results in severe reductions in multiple neuronal subpopulations in the dorsal root ganglia. J Neurosci 16:3704–3713

    PubMed  CAS  Google Scholar 

  • Lei L, Parada LF (2007) Transcriptional regulation of Trk family neurotrophin receptors. Cell Mol Life Sci 64:522–532

    PubMed  CAS  Google Scholar 

  • Lei L, Ma L, Nef S, Thai T, Parada LF (2001) mKlf7, a potential transcriptional regulator of TrkA nerve growth factor receptor expression in sensory and sympathetic neurons. Development 128:1147–1158

    PubMed  CAS  Google Scholar 

  • Lei L, Laub F, Lush M, Romero M, Zhou J, Luikart B, Klesse L, Ramirez F, Parada LF (2005) The zinc finger transcription factor Klf7 is required for TrkA gene expression and development of nociceptive sensory neurons. Genes Dev 19:1354–1364

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lei L, Zhou J, Lin L, Parada LF (2006) Brn3a and Klf7 cooperate to control TrkA expression in sensory neurons. Dev Biol 300:758–769

    PubMed  CAS  Google Scholar 

  • Levanon D, Bettoun D, Harris-Cerruti C, Woolf E, Negreanu V, Eilam R, Bernstein Y, Goldenberg D, Xiao C, Fliegauf M, Kremer E, Otto F, Brenner O, Lev-Tov A, Groner Y (2002) The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J 21:3454–3463

    PubMed Central  PubMed  CAS  Google Scholar 

  • Li L, Rutlin M, Abraira VE, Cassidy C, Kus L, Gong S, Jankowski MP, Luo W, Heintz N, Koerber HR, Woodbury CJ, Ginty DD (2012) The functional organization of cutaneous low-threshold mechanosensory neurons. Cell 147:1615–1627

    Google Scholar 

  • Liebl DJ, Tessarollo L, Palko ME, Parada LF (1997) Absence of sensory neurons before target innervation in brain-derived neurotrophic factor-, neurotrophin 3-, and TrkC-deficient embryonic mice. J Neurosci 17:9113–9121

    PubMed  CAS  Google Scholar 

  • Liebl DJ, Klesse LJ, Tessarollo L, Wohlman T, Parada LF (2000) Loss of brain-derived neurotrophic factor-dependent neural crest-derived sensory neurons in neurotrophin-4 mutant mice. Proc Natl Acad Sci U S A 97:2297–2302

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lin JH, Saito T, Anderson DJ, Lance-Jones C, Jessell TM, Arber S (1998) Functionally related motor neuron pool and muscle sensory afferent subtypes defined by coordinate ETS gene expression. Cell 95:393–407

    PubMed  CAS  Google Scholar 

  • Liu Y, Ma Q (2011) Generation of somatic sensory neuron diversity and implications on sensory coding. Curr Opin Neurobiol 21:52–60

    PubMed Central  PubMed  Google Scholar 

  • Liu Q, Vrontou S, Rice FL, Zylka MJ, Dong X, Anderson DJ (2007) Molecular genetic visualization of a rare subset of unmyelinated sensory neurons that may detect gentle touch. Nat Neurosci 10:946–948

    PubMed  CAS  Google Scholar 

  • Liu Q, Tang Z, Surdenikova L, Kim S, Patel KN, Kim A, Ru F, Guan Y, Weng HJ, Geng Y, Undem BJ, Kollarik M, Chen ZF, Anderson DJ, Dong X (2009) Sensory neuron-specific GPCR Mrgprs are itch receptors mediating chloroquine-induced pruritus. Cell 139:1353–1365

    PubMed Central  PubMed  Google Scholar 

  • Lopes C, Liu Z, Xu Y, Ma Q (2012) Tlx3 and Runx1 act in combination to coordinate the development of a cohort of nociceptors, thermoceptors, and pruriceptors. J Neurosci 32:9706–9715

    PubMed Central  PubMed  CAS  Google Scholar 

  • Luo W, Wickramasinghe SR, Savitt JM, Griffin JW, Dawson TM, Ginty DD (2007) A hierarchical NGF signaling cascade controls Ret-dependent and Ret-independent events during development of nonpeptidergic DRG neurons. Neuron 54:739–754

    PubMed  CAS  Google Scholar 

  • Luo W, Enomoto H, Rice FL, Milbrandt J, Ginty DD (2009) Molecular identification of rapidly adapting mechanoreceptors and their developmental dependence on ret signaling. Neuron 64:841–856

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ma Q, Fode C, Guillemot F, Anderson DJ (1999) Neurogenin1 and neurogenin2 control two distinct waves of neurogenesis in developing dorsal root ganglia. Genes Dev 13:1717–1728

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ma L, Merenmies J, Parada LF (2000) Molecular characterization of the TrkA/NGF receptor minimal enhancer reveals regulation by multiple cis elements to drive embryonic neuron expression. Development 127:3777–3788

    PubMed  CAS  Google Scholar 

  • Ma L, Lei L, Eng SR, Turner E, Parada LF (2003) Brn3a regulation of TrkA/NGF receptor expression in developing sensory neurons. Development 130:3525–3534

    PubMed  CAS  Google Scholar 

  • Marmigere F, Ernfors P (2007) Specification and connectivity of neuronal subtypes in the sensory lineage. Nat Rev Neurosci 8:114–127

    PubMed  CAS  Google Scholar 

  • Marmigere F, Montelius A, Wegner M, Groner Y, Reichardt LF, Ernfors P (2006) The Runx1/AML1 transcription factor selectively regulates development and survival of TrkA nociceptive sensory neurons. Nat Neurosci 9:180–187

    PubMed Central  PubMed  CAS  Google Scholar 

  • Maro GS, Vermeren M, Voiculescu O, Melton L, Cohen J, Charnay P, Topilko P (2004) Neural crest boundary cap cells constitute a source of neuronal and glial cells of the PNS. Nat Neurosci 7:930–938

    PubMed  CAS  Google Scholar 

  • McEvilly RJ, Erkman L, Luo L, Sawchenko PE, Ryan AF, Rosenfeld MG (1996) Requirement for Brn-3.0 in differentiation and survival of sensory and motor neurons. Nature 384:574–577

    PubMed  CAS  Google Scholar 

  • McKemy DD (2005) How cold is it? TRPM8 and TRPA1 in the molecular logic of cold sensation. Mol Pain 1:16

    PubMed Central  PubMed  Google Scholar 

  • McMahon SB, Armanini MP, Ling LH, Phillips HS (1994) Expression and coexpression of Trk receptors in subpopulations of adult primary sensory neurons projecting to identified peripheral targets. Neuron 12:1161–1171

    PubMed  CAS  Google Scholar 

  • Mead TJ, Yutzey KE (2012) Notch pathway regulation of neural crest cell development in vivo. Dev Dyn 241:376–389

    PubMed Central  PubMed  CAS  Google Scholar 

  • Memberg SP, Hall AK (1995) Proliferation, differentiation, and survival of rat sensory neuron precursors in vitro require specific trophic factors. Mol Cell Neurosci 6:323–335

    PubMed  CAS  Google Scholar 

  • Minichiello L, Piehl F, Vazquez E, Schimmang T, Hokfelt T, Represa J, Klein R (1995) Differential effects of combined trk receptor mutations on dorsal root ganglion and inner ear sensory neurons. Development 121:4067–4075

    PubMed  CAS  Google Scholar 

  • Molliver DC, Snider WD (1997) Nerve growth factor receptor TrkA is down-regulated during postnatal development by a subset of dorsal root ganglion neurons. J Comp Neurol 381:428–438

    PubMed  CAS  Google Scholar 

  • Molliver DC, Wright DE, Leitner ML, Parsadanian AS, Doster K, Wen D, Yan Q, Snider WD (1997) IB4-binding DRG neurons switch from NGF to GDNF dependence in early postnatal life. Neuron 19:849–861

    PubMed  CAS  Google Scholar 

  • Montelius A, Marmigere F, Baudet C, Aquino JB, Enerback S, Ernfors P (2007) Emergence of the sensory nervous system as defined by Foxs1 expression. Differentiation 75:404–417

    PubMed  CAS  Google Scholar 

  • Moqrich A, Earley TJ, Watson J, Andahazy M, Backus C, Martin-Zanca D, Wright DE, Reichardt LF, Patapoutian A (2004) Expressing TrkC from the TrkA locus causes a subset of dorsal root ganglia neurons to switch fate. Nat Neurosci 7:812–818

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mulloy JC, Jankovic V, Wunderlich M, Delwel R, Cammenga J, Krejci O, Zhao H, Valk PJ, Lowenberg B, Nimer SD (2005) AML1-ETO fusion protein up-regulates TRKA mRNA expression in human CD34+ cells, allowing nerve growth factor-induced expansion. Proc Natl Acad Sci U S A 102:4016–4021

    PubMed Central  PubMed  CAS  Google Scholar 

  • Murphy M, Reid K, Ford M, Furness JB, Bartlett PF (1994) FGF2 regulates proliferation of neural crest cells, with subsequent neuronal differentiation regulated by LIF or related factors. Development 120:3519–3528

    PubMed  CAS  Google Scholar 

  • Nakamura S, Senzaki K, Yoshikawa M, Nishimura M, Inoue K, Ito Y, Ozaki S, Shiga T (2008) Dynamic regulation of the expression of neurotrophin receptors by Runx3. Development 135:1703–1711

    PubMed  CAS  Google Scholar 

  • Nakazaki H, Reddy AC, Mania-Farnell BL, Shen YW, Ichi S, McCabe C, George D, McLone DG, Tomita T, Mayanil CS (2008) Key basic helix-loop-helix transcription factor genes Hes1 and Ngn2 are regulated by Pax3 during mouse embryonic development. Dev Biol 316:510–523

    PubMed  CAS  Google Scholar 

  • Oakley RA, Lefcort FB, Plouffe P, Ritter A, Frank E (2000) Neurotrophin-3 promotes the survival of a limited subpopulation of cutaneous sensory neurons. Dev Biol 224:415–427

    PubMed  CAS  Google Scholar 

  • Ockel M, Lewin GR, Barde YA (1996) In vivo effects of neurotrophin-3 during sensory neurogenesis. Development 122:301–307

    PubMed  CAS  Google Scholar 

  • Ota M, Ito K (2006) BMP and FGF-2 regulate neurogenin-2 expression and the differentiation of sensory neurons and glia. Dev Dyn 235:646–655

    PubMed  CAS  Google Scholar 

  • Patapoutian A, Peier AM, Story GM, Viswanath V (2003) ThermoTRP channels and beyond: mechanisms of temperature sensation. Nat Rev Neurosci 4:529–539

    PubMed  CAS  Google Scholar 

  • Patel TD, Jackman A, Rice FL, Kucera J, Snider WD (2000) Development of sensory neurons in the absence of NGF/TrkA signaling in vivo. Neuron 25:345–357

    PubMed  CAS  Google Scholar 

  • Patel TD, Kramer I, Kucera J, Niederkofler V, Jessell TM, Arber S, Snider WD (2003) Peripheral NT3 signaling is required for ETS protein expression and central patterning of proprioceptive sensory afferents. Neuron 38:403–416

    PubMed  CAS  Google Scholar 

  • Pavan WJ, Raible DW (2012) Specification of neural crest into sensory neuron and melanocyte lineages. Dev Biol 366:55–63

    PubMed Central  PubMed  CAS  Google Scholar 

  • Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A (2002) A TRP channel that senses cold stimuli and menthol. Cell 108:705–715

    PubMed  CAS  Google Scholar 

  • Phillips HS, Armanini MP (1996) Expression of the trk family of neurotrophin receptors in developing and adult dorsal root ganglion neurons. Philos Trans R Soc Lond B Biol Sci 351:413–416

    PubMed  CAS  Google Scholar 

  • Pinco O, Carmeli C, Rosenthal A, Kalcheim C (1993) Neurotrophin-3 affects proliferation and differentiation of distinct neural crest cells and is present in the early neural tube of avian embryos. J Neurobiol 24:1626–1641

    PubMed  CAS  Google Scholar 

  • Pinon LG, Minichiello L, Klein R, Davies AM (1996) Timing of neuronal death in trkA, trkB and trkC mutant embryos reveals developmental changes in sensory neuron dependence on Trk signalling. Development 122:3255–3261

    PubMed  CAS  Google Scholar 

  • Raible DW, Ragland JW (2005) Reiterated Wnt and BMP signals in neural crest development. Semin Cell Dev Biol 16:673–682

    PubMed  CAS  Google Scholar 

  • Rebelo S, Chen ZF, Anderson DJ, Lima D (2006) Involvement of DRG11 in the development of the primary afferent nociceptive system. Mol Cell Neurosci 33:236–246

    PubMed  CAS  Google Scholar 

  • Rebelo S, Lopes C, Lima D, Reguenga C (2009) Expression of a Prrxl1 alternative splice variant during the development of the mouse nociceptive system. Int J Dev Biol 53:1089–1095

    PubMed  CAS  Google Scholar 

  • Rifkin JT, Todd VJ, Anderson LW, Lefcort F (2000) Dynamic expression of neurotrophin receptors during sensory neuron genesis and differentiation. Dev Biol 227:465–480

    PubMed  CAS  Google Scholar 

  • Sacristan MP, de Diego JG, Bonilla M, Martin-Zanca D (1999) Molecular cloning and characterization of the 5′ region of the mouse trkA proto-oncogene. Oncogene 18:5836–5842

    PubMed  CAS  Google Scholar 

  • Schecterson LC, Bothwell M (1992) Novel roles for neurotrophins are suggested by BDNF and NT-3 mRNA expression in developing neurons. Neuron 9:449–463

    PubMed  CAS  Google Scholar 

  • Scott A, Hasegawa H, Sakurai K, Yaron A, Cobb J, Wang F (2011) Transcription factor short stature homeobox 2 is required for proper development of tropomyosin-related kinase B-expressing mechanosensory neurons. J Neurosci 31:6741–6749

    PubMed Central  PubMed  CAS  Google Scholar 

  • Serbedzija GN, McMahon AP (1997) Analysis of neural crest cell migration in Splotch mice using a neural crest-specific LacZ reporter. Dev Biol 185:139–147

    PubMed  CAS  Google Scholar 

  • Sharma N, Deppmann CD, Harrington AW, St Hillaire C, Chen ZY, Lee FS, Ginty DD (2010) Long-distance control of synapse assembly by target-derived NGF. Neuron 67:422–434

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sieber-Blum M, Ito K, Richardson MK, Langtimm CJ, Duff RS (1993) Distribution of pluripotent neural crest cells in the embryo and the role of brain-derived neurotrophic factor in the commitment to the primary sensory neuron lineage. J Neurobiol 24(2):173–184

    PubMed  CAS  Google Scholar 

  • Smeyne RJ, Klein R, Schnapp A, Long LK, Bryant S, Lewin A, Lira SA, Barbacid M (1994) Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature 368:246–249

    PubMed  CAS  Google Scholar 

  • Stucky CL, Shin JB, Lewin GR (2002) Neurotrophin-4: a survival factor for adult sensory neurons. Curr Biol 12:1401–1404

    PubMed  CAS  Google Scholar 

  • Stuhlmiller TJ, Garcia-Castro MI (2012) Current perspectives of the signaling pathways directing neural crest induction. Cell Mol Life Sci 69:3715–3737

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sun Y, Dykes IM, Liang X, Eng SR, Evans SM, Turner EE (2008) A central role for Islet1 in sensory neuron development linking sensory and spinal gene regulatory programs. Nat Neurosci 11:1283–1293

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sun Y, Lim Y, Li F, Liu S, Lu JJ, Haberberger R, Zhong JH, Zhou XF (2012) ProBDNF collapses neurite outgrowth of primary neurons by activating RhoA. PLoS One 7:e35883

    PubMed Central  PubMed  CAS  Google Scholar 

  • Vaegter CB, Jansen P, Fjorback AW, Glerup S, Skeldal S, Kjolby M, Richner M, Erdmann B, Nyengaard JR, Tessarollo L, Lewin GR, Willnow TE, Chao MV, Nykjaer A (2011) Sortilin associates with Trk receptors to enhance anterograde transport and neurotrophin signaling. Nat Neurosci 14:54–61

    PubMed  CAS  Google Scholar 

  • Valderrama X, Misra V (2008) Novel Brn3a cis-acting sequences mediate transcription of human trkA in neurons. J Neurochem 105:425–435

    PubMed  CAS  Google Scholar 

  • Valderrama X, Rapin N, Misra V (2008) Zhangfei, a novel regulator of the human nerve growth factor receptor, trkA. J Neurovirol 14:425–436

    PubMed  CAS  Google Scholar 

  • Wende H, Lechner SG, Cheret C, Bourane S, Kolanczyk ME, Pattyn A, Reuter K, Munier FL, Carroll P, Lewin GR, Birchmeier C (2012) The transcription factor c-Maf controls touch receptor development and function. Science 335:1373–1376

    PubMed  CAS  Google Scholar 

  • Wetmore C, Olson L (1995) Neuronal and nonneuronal expression of neurotrophins and their receptors in sensory and sympathetic ganglia suggest new intercellular trophic interactions. J Comp Neurol 353:143–159

    PubMed  CAS  Google Scholar 

  • White FA, Silos-Santiago I, Molliver DC, Nishimura M, Phillips H, Barbacid M, Snider WD (1996) Synchronous onset of NGF and TrkA survival dependence in developing dorsal root ganglia. J Neurosci 16:4662–4672

    PubMed  CAS  Google Scholar 

  • Wiggins AK, Wei G, Doxakis E, Wong C, Tang AA, Zang K, Luo EJ, Neve RL, Reichardt LF, Huang EJ (2004) Interaction of Brn3a and HIPK2 mediates transcriptional repression of sensory neuron survival. J Cell Biol 167:257–267

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wilkinson GA, Farinas I, Backus C, Yoshida CK, Reichardt LF (1996) Neurotrophin-3 is a survival factor in vivo for early mouse trigeminal neurons. J Neurosci 16:7661–7669

    PubMed Central  PubMed  CAS  Google Scholar 

  • Woolf CJ, Ma Q (2007) Nociceptors – noxious stimulus detectors. Neuron 55:353–364

    PubMed  CAS  Google Scholar 

  • Wright DE, Snider WD (1995) Neurotrophin receptor mRNA expression defines distinct populations of neurons in rat dorsal root ganglia. J Comp Neurol 351:329–338

    PubMed  CAS  Google Scholar 

  • Wright EM, Vogel KS, Davies AM (1992) Neurotrophic factors promote the maturation of developing sensory neurons before they become dependent on these factors for survival. Neuron 9:139–150

    PubMed  CAS  Google Scholar 

  • Wyatt S, Ensor L, Begbie J, Ernfors P, Reichardt LF, Latchman DS (1998) NT-3 regulates expression of Brn3a but not Brn3b in developing mouse trigeminal sensory neurons. Brain Res Mol Brain Res 55:254–264

    PubMed  CAS  Google Scholar 

  • Xiang M, Gan L, Zhou L, Klein WH, Nathans J (1996) Targeted deletion of the mouse POU domain gene Brn-3a causes selective loss of neurons in the brainstem and trigeminal ganglion, uncoordinated limb movement, and impaired suckling. Proc Natl Acad Sci U S A 93:11950–11955

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yoshikawa M, Senzaki K, Yokomizo T, Takahashi S, Ozaki S, Shiga T (2007) Runx1 selectively regulates cell fate specification and axonal projections of dorsal root ganglion neurons. Dev Biol 303(2):663–674

    PubMed  CAS  Google Scholar 

  • Yoshikawa M, Murakami Y, Senzaki K, Masuda T, Ozaki S, Ito Y, Shiga T (2013) Coexpression of Runx1 and Runx3 in mechanoreceptive dorsal root ganglion neurons. Dev Neurobiol 73(6):469–479

    PubMed  CAS  Google Scholar 

  • Zhang J, Chen X (2007) DeltaNp73 modulates nerve growth factor-mediated neuronal differentiation through repression of TrkA. Mol Cell Biol 27:3868–3880

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Carroll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg 2014

About this chapter

Cite this chapter

Marmigère, F., Carroll, P. (2014). Neurotrophin Signalling and Transcription Programmes Interactions in the Development of Somatosensory Neurons. In: Lewin, G., Carter, B. (eds) Neurotrophic Factors. Handbook of Experimental Pharmacology, vol 220. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45106-5_13

Download citation

Publish with us

Policies and ethics