Skip to main content
Log in

Common general morphological pattern of peptidergic neurons in the arachnid brain: crustacean cardioactive peptide-immunoreactive neurons in the protocerebrum of seven arachnid species

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

A polyclonal antiserum raised against crustacean cardioactive peptide labels 14 clusters of immunoreactive neurons in the protocerebrum of the spiders Tegenaria atrica and Nephila clavipes, and the harvestman (opilionid) Rilaena triangularis. In all species, these clusters possess the same number of neurons, and share similar structural and topological characteristics. Two sets of bilateral symmetrical neurons associated with the optic lobes and the arachnid “central body” were analysed in detail, comparing the harvestman R. triangularis and the spiders Brachypelma albopilosa (Theraphosidae), Cupiennius salei (Lycosidae), Tegenaria atrica (Agelenidae), Meta segmentata (Metidae) and Nephila clavipes (Araneidae). Sixteen neurons have been identified that display markedly similar axonal pathways and arborization patterns in all species. These neurons are considered homologues in the opilionid and the araneid brains. We presume that these putative phylogenetically persisting neurons represent part of the general morphological pattern of the arachmid brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson DT (1973) Embryology and phylogeny in annelids and arthropds Pergamon Press, Oxford

    Google Scholar 

  • Arbas EA, Meinertzhagen IA, Shaw SR (1991) Evolution in nervous systems. Annu Rev Neurosci 14:9–38

    Google Scholar 

  • Audehm U, Trube A, Dircksen H (1993) Patterns and projections of crustacean-cardioactive-peptide-immunoreactive neurons of the terminal ganglion of crayfish. Cell Tissue Res 272:473–485

    Google Scholar 

  • Babu KS (1985) Patterns of arrangement and connectivity in the central nervous system of arachnids. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin Heidelberg New York, pp 3–19

    Google Scholar 

  • Bergström J (1979) Morphology of fossil arthropods as a guide to phylogenetic relationships (1979) In: Gupta AP (ed) Arthropod phylogeny. Van Norstrand, New York, pp 3–56

    Google Scholar 

  • Breidbach O (1990) Constant topological organization of the coleopteran metamorphosing nervous system — analysis of persistent elements in the nervous system of Tenebrio molitor. J Neurobiol 21:990–1001

    Google Scholar 

  • Breidbach O (1992) Ist das Arthropoden-Hirn zweimal entstanden? Natur Museum 122:301–310

    Google Scholar 

  • Breidbach O (1994) Common “bauplan” of the arthropod nervous systems? In: Breidbach O, Kutsch W (eds) The nervous systems of invertebrates — an evolutionary and comparative approach. Birkhäuser, Basel (in press)

    Google Scholar 

  • Breidbach O, Dircksen H (1991) Crustacean cardioactive peptide-immunoreactive neurons in the ventral nerve cord and the brain of the meal beetle Tenebrio molitor during postembryonic development. Cell Tissue Res 265:129–144

    Google Scholar 

  • Breidbach O, Kutsch W (1990) Structural homology of identified motoneurons in larval and adult stages of hemi- and holometabolous insects. J Comp Neurol 297:392–409

    Google Scholar 

  • Breidbach O, Wegerhoff R (1993) Neuroanatomy of the central nervous system of the harvestman, Rilaena triangularis (HERBST 1799) (Arachnida; Opiliones)—principal organization, GABA-like and serotonin-immunohistochemistry. Zool Anz 230:55–81

    Google Scholar 

  • Breidbach O, Wegerhoff R (1994) FMRFamide-like immunoreactive neurons in the brain of the beetle, Tenebrio molitor (Coleoptera: Tenebrionidae): Constancies and variations in development from the embryo to the adult. Int J Insect Morphol Embryol 29:383–404

    Google Scholar 

  • Bullock TH, Horridge GA (1965) Structure and function in the nervous systems of invertebrates, vol 2. Freeman, San Francisco

    Google Scholar 

  • Cheung CC, Loi PK, Sylwester AB, Lee TD, Tublitz NJ (1992) Primary structure of a cardioactive neuropeptide from the tobacco hawkmoth, Manduca sexta. FEBS Lett 313:165–168

    Google Scholar 

  • Dircksen H (1994) Distribution and physiology of crustacean cardioactive peptide in arthropods. Can J Zool 71 (in press)

  • Dircksen H, Keller R (1988) Immunocytochemical localization of CCAP, a novel crustacean cardioactive peptide in the nervous system of the shore crab, Carcinus maenas L. Cell Tissue Res 256:347–360

    Google Scholar 

  • Dircksen H, Müller A, Keller R (1991) Crustacean cardioactive peptide in the nervous system of the locust Locusta migratoria: an immunocytochemical study of the ventral nerve cord and peripheral innervation. Cell Tissue Res 263:439–457

    Google Scholar 

  • Foelix RF (1992) Biologie der Spinnen. Thieme, Stuttgart

    Google Scholar 

  • Groome JR, Townley MA, De Tschaschell M, Tillinghast EK (1991) Detection and isolation of proctolin-like immunoreactivity in arachnids: possible cardioregulatory role for proctolin in the orb-weaving spiders Argiope and Araneus. J Insect Physiol 37:9–19

    Google Scholar 

  • Gupta AP (1987) Evolutionary trends in the central and mushroom bodies of the arthropod brain. A dilemma. In: Gupta AP (ed) Arthropod brain. Wiley, New York, pp 27–44

    Google Scholar 

  • Hammen L van der (1989) An introduction in comparative arachnology. SPB Academic Press, Den Haag

    Google Scholar 

  • Hanström B (1919) Zur Kenntnis des zentralen Nervensystems der Arachnoiden und Pantopoden. PhD thesis, Lund AB Skanska

  • Hanström B (1921) Über die Histologie und vergleichende Anatomie der Sehganglien und der Globuli der Araneen. Kungl Svenska Vetensk Akad Hand 61:1–39

    Google Scholar 

  • Hanström B (1923) Further notes on the central nervous system of arachnids, scorpions, phalangids and trap-door spiders. J Comp Neurol 35:249–272

    Google Scholar 

  • Hanström B (1926) Untersuchungen über die relative Größe der Gehirnzentren verschiedener Arthropoden unter Berücksichtigung der Lebensweise. Z Mikrosk Anat Forsch 7:135–190

    Google Scholar 

  • Hanström B (1928) Vergleichende Anatomie des Nervensystems der wirbellosen Tiere. Springer, Berlin

    Google Scholar 

  • Hanström B (1935) Fortgesetzte Untersuchungen über das Araneengehirn. Zool Jb Anat 59:455–478

    Google Scholar 

  • Holmgren E (1916) Zur vergleichenden Anatomie des Gehirns der Polychaeten, Onychophora, Xiphosuren, Arachniden, Crustaceen, Myriapoden und Insekten. Kungl Svensk Vetensk Handl 56:1–303

    Google Scholar 

  • Juberthie C (1983) Neurosecretory systems and neurohemal organs of terrestrial Chelicerata (Arachnida). In: Gupta AP (ed) Neurohemal organs of arthropods. Thomas, Springfield, Illinois, pp 149–203

    Google Scholar 

  • Kutsch W, Breidbach O (1994) Homologous structures in the nervous systems of Arthropoda. Adv Insect Physiol 24:1–113

    Google Scholar 

  • Lehman HK, Murgiuc CM, Miller TA, Lee TD, Hildebrand JG (1993) Crustacean cardioactive peptide in the sphinx moth, Manduca sexta. Peptides 14:735–741

    Google Scholar 

  • Meyer W, Schlesinger C, Poehling HM, Ruge W (1984) Comparative quantitative aspects of putative neurotransmitters in the central nervous system of spiders (Arachnida: Araneida). Comp Biochem Physiol [C] 78:357–362

    Google Scholar 

  • Nentwig W (1987) Ecophysiology of spiders. Springer, Berlin Heidelberg New York, pp 380–388

    Google Scholar 

  • Remane A (1956) Die Grundlagen des natürlichen Systems, der vergleichenden Anatomie und der Phylogenetik. Akad Verl Geest & Portig, Leipzig

    Google Scholar 

  • Schmid A, Duncker M (1993) Histamine immunoreactivity in the central nervous system of the spider Cupiennius salei. Cell Tissue Res 273:533–545

    Google Scholar 

  • Schmid A, Duncker M, Spörhase-Eichmann U (1990) Verteilung FMRFamid- und GABA-artiger Immunoreaktivität im ZNS der Jagdspinne Cupiennius salei. Verh Dtsch Zool Ges 83:639–640

    Google Scholar 

  • Seyfarth EA, Hammer K, Grünert U (1990) Serotonin-like immunoreactivity in the CNS of spiders. In: Elsner N, Roth G (eds) Brain-perception-cognition. Thieme, Stuttgart, p 331

    Google Scholar 

  • Seyfarth E, Hammer K, Spörhase-Eichmann U, Hörner M, Vullings HGB (1993) Octopamine immunoreactive neurons in the fused central nervous system of spiders. Brain Res 611:193–206

    Google Scholar 

  • Stangier J, Keller R (1990) Occurrence of the crustacean cardioactive peptide (CCAP) in the nervous system of the crayfish, Orconectus limosus. In: Wiese K, Krenz WD, Tautz J, Reichert H, Mulloney B (eds) Frontiers in crustacean neurobiology. Birkhäuser, Basel, pp 394–400

    Google Scholar 

  • Stangier J, Hilbich C, Beyreuther K, Keller R (1987) Unusual cardioactive peptide (CCAP) from pericardial organs of the shore crab Carcinus maenas. Proc Natl Acad Sci USA 84:575–579

    Google Scholar 

  • Stangier J, Hilbich C, Keller R (1989) Occurrence of crustacean cardioactive peptide (CCAP) in the nervous system of an insect, Locusta migranoria. J Comp Physiol [B] 159:5–11

    Google Scholar 

  • Sternberger A (1979) The unlabeled antibody peroxidase-antiper-oxidase (PAP) method. Wiley, New York, pp 104–169

    Google Scholar 

  • Strausfeld NJ, Barth FG (1993) Two visual systems in one brain: neuropils serving the secondary eyes of the spider Cupiennius salei. J Comp Neurol 328:43–62

    Google Scholar 

  • Strausfeld NJ, Weltzien P, Barth FG (1993) Two visual systems in one brain: neuropils serving the principal eyes of the spider Cupiennius salei. J Comp Neurol 328:43–62

    Google Scholar 

  • Trube A, Audehm U, Dircksen H (1994) Crustacean cardioactive peptide-immunoreactive neurons in the ventral nervous system of crayfish. J Comp Neurol (in press)

  • Wegerhoff R, Breidbach O (1994) Comparative aspects of the Chelicerata nervous system. In: Breidbach O, Kutsch W (eds) The nervous systems of invertebrates — an evolutionary and comparative approach. Birkhäuser, Basel (in press)

    Google Scholar 

  • Weltzien P (1988) Vergleichende Neuroanatomie des Spinnenhirns unter besonderer Berücksichtigung des Zentralkörpers. PhD thesis. University of Frankfurt, Germany

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breidbach, O., Dircksen, H. & Wegerhoff, R. Common general morphological pattern of peptidergic neurons in the arachnid brain: crustacean cardioactive peptide-immunoreactive neurons in the protocerebrum of seven arachnid species. Cell Tissue Res 279, 183–197 (1995). https://doi.org/10.1007/BF00300703

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00300703

Key words

Navigation