Skip to main content
Log in

Body temperature and metabolic rate during natural hypothermia in endotherms

Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

During daily torpor and hibernation metabolic rate is reduced to a fraction of the euthermic metabolic rate. This reduction is commonly explained by temperature effects on biochemical reactions, as described by Q 10 effects or Arrhenius plots. This study shows that the degree of metabolic suppression during hypothermia can alternatively be explained by active downregulation of metabolic rate and thermoregulatory control of heat production. Heat regulation is fully adequate to predict changes in metabolic rate, and Q 10 effects are not required to explain the reduction of energy requirements during hibernation and torpor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abbreviations

BMR:

basal metabolic rate

BW:

body weight

C:

thermal conductance

CHL :

thermal conductance as derived from HL

CHP :

thermal conductance as derived from HP

HL:

heat loss

HP:

heat production

MR:

metabolic rate

RQ:

respiratory quotient

Ta :

ambient temperature

Tb :

body temperature

References

  • Aschoff J (1981) Thermal conductance in mammals and birds: its dependence on body size and circadian phase. Comp Biochem Physiol 69A:611–619

    Google Scholar 

  • Aschoff J (1982) The circadian rhythm of body temperature as a function of body size. In: Taylor CR (ed) A companion to animal physiology. Cambridge Univ. Press, pp 173–188

  • Barnes BM (1989) Freeze avoidance in a mammal: body temperatures below 0°C in an arctic hibernator. Science 244:1593–1595

    Google Scholar 

  • Bartholomew GA, Hudson JW (1960) Aestivation in the mohave ground squirrel Citellus mohavensis. Bull Mus Comp Zool Harv Univ 124:193–208

    Google Scholar 

  • Bartholomew GA, Hudson JW (1962) Hibernation, estivation, temperature regulation, evaporative water loss, and heart rate of the pigmy possum, Cercaertus nanus. Physiol Zool 35:94–107

    Google Scholar 

  • Biebach H (1977) Reduktion des Energiestoffwechsels und der Körpertemperatur hungernder Amseln (Turdus merula). J Ornit 118:294–300

    Google Scholar 

  • Brown JH, Bartholomew GA (1969) Periodicity and energetics of torpor in the Kangaroo mouse, Microdipodops pallidus. Ecology 50:705–709

    Google Scholar 

  • Brummermann M, Rautenberg W (1989) Interaction of autonomic and behavioral thermoregulation in osmotically stressed pigeons (Columbia livia). Physiol Zool 62:1102–1116

    Google Scholar 

  • Cannon B, Nedergaard J (1985) Biochemical mechanisms of thermogenesis. In: Gilles R (ed) Circulation, respiration and metabolism. Springer, Heidelberg, pp 502–518

    Google Scholar 

  • Cranford JA (1983) Body temperature, heart rate and oxygen consumption of normothermic and heterothermic western jumping mice (Zapus princeps). Comp Biochem Physiol 74A:595–599

    Google Scholar 

  • Christophersen J (1973) Basic aspects of temperature action on microorganisms. In: Precht H (ed) Temperature and life. Springer, Heidelberg, pp 3–59

    Google Scholar 

  • Fleming MR (1980) Thermoregulation and torpor in the sugar glider, Petaurus breviceps (Marsupialia: Petauridae). Austr J Zool 28:521–534

    Google Scholar 

  • Florant G, Heller HC (1977) CNS regulation of body temperature in euthermic and hibernating marmosts (Marmota flaviventris). Am J Physiol 232:R203-R208

    Google Scholar 

  • French AR (1985) Allometries of the durations of torpid and euthermic intervals during mammalian hibernation: A test of the theory of hibernation control of the timing of changes in body temperature. J Comp Physiol B 156:13–19

    Google Scholar 

  • Geiser F (1986) Thermoregulation and torpor in the kultarr, Antechinomys laniger (Marsupialia: Dasyuridae). J Comp Physiol B 156:751–757

    Google Scholar 

  • Geiser F (1987) Hibernation and daily torpor in two pygmy possums (Cercartetus spp., Marsupialia). Physiol Zool 60:93–102

    Google Scholar 

  • Geiser F (1988) Reduction of metabolism during hibernation and daily torpor in mammals and birds: temperature effect or physiological inhibition? J Comp Physiol B 158:25–37

    Google Scholar 

  • Geiser F, Baudinette RV (1987) Seasonality of torpor and thermoregulation in three dasyurid marsupials. J Comp Physiol B 157:335–344

    Google Scholar 

  • Hainsworth FR, Wolf LL (1970) Regulation of oxygen consumption and body temperature during torpor in a humming bird, Eulampis jugularis. Science 168:368–369

    Google Scholar 

  • Hammel HT, Dawson TJ, Abrams RM, Andersen HT (1968) Total calorimetric measurements on Citellus lateralis in hibernation. Physiol Zool 41:341–357

    Google Scholar 

  • Hayssen V, Lacy RC (1985) Basal metabolic rates in mammals: taxonomic differences in the allometry of BMR and body mass. Comp Biochem Physiol 81A:741–754

    Google Scholar 

  • Heldmaier G (1970) Variations of body temperature and metabolism during entrance into cold lethargy in the bat Myotis myotis. Bijdr Dierkd 40:45–50

    Google Scholar 

  • Heldmaier G (1975) Metabolic and thermoregulatory responses to heat and cold in the Djungarian hamster, Phodopus sungorus. J Comp Physiol 102:115–122

    Google Scholar 

  • Heldmaier G, Steinlechner S (1981) Seasonal pattern and energetics of short daily torpor in the Djungarian hamster, Phodopus sungorus. Oecologia 48:265–270

    Google Scholar 

  • Heller HC, Colliver GW (1974) CNS regulation of body temperature during hibernation. Am J Physiol 227:583–589

    Google Scholar 

  • Heller HC, Colliver GW, Beard J (1977) Thermoregulation during entrance into hibernation. Pflügers Arch 369:55–59

    Google Scholar 

  • Heller HC, Walker JM, Florant GL, Glotzbach SF, Berger RJ (1978) Sleep and hibernation: electrophysiological and thermoregulatory homologies. In: Wang LCH, Hudson JW (eds) Strategies in cold: natural torpidity and thermogenesis. Academic Press, New York, pp 225–265

    Google Scholar 

  • Heusner A (1957) Variations nycthémérales de la calorification et de l'activité chez le rat: rapports entre le métabolisme de repos et le niveau d'activité. J de Physiol (Paris) 49:205–210

    Google Scholar 

  • Hiebert SM (1990) Energy costs and temporal organization of torpor in the rufous hummingbird (Selasphorus rufus). Physiol Zool 63:1082–1097

    Google Scholar 

  • Hill RW (1975) Daily torpor in Peromyscus leucopus on an adequate diet. Comp Biochem Physiol 51A:413–423

    Google Scholar 

  • Hudson JW, Scott IM (1979) Daily torpor in the laboratory mouse, Mus musculus var. Albino. Physiol Zool 52:205–218

    Google Scholar 

  • Johansen K, Krog J (1959) Diurnal body temperature variatons and hibernation in the birchmouse, Sicista betulina. Am J Physiol 196:1200–1204

    Google Scholar 

  • Kayser C (1950) Le problème de la loi des tailles et de la loi des surfaces tel qu'il apparait dans l'étude de la calorification des batrachens et reptiles et des mammifères hibernants. Arch Sci Physiol 4:361–378

    Google Scholar 

  • Kayser C (1961) The physiology of natural hibernation. Pergamon Press, Oxford

    Google Scholar 

  • Kayser C (1964) La dépense d'énergie des mammifères en hibernation. Arch Sci Physiol 18:137–150

    Google Scholar 

  • Kinnear A, Shield JW (1975) Metabolism and temperature regulation in marsupials Comp Biochem Physiol 52A:235–245

    Google Scholar 

  • Lyman CP (1948) The oxygen consumption and temperature regulation of hibernating hamsters. J Exp Zool 109:55–78

    Google Scholar 

  • Lyman CP (1958) Oxygen consumption, body temperature and heart rate of woodchucks entering hibernation. Am J Physiol 194:83–91

    Google Scholar 

  • Lyman CP, O'Brien RC (1972) Sensitivity to low temperature in hibernating rodents. Am J Physiol 222:864–869

    Google Scholar 

  • Malan A (1986) pH as a control factor in hibernation. In: Heller HC et al. (eds) Living in the cold. Elsevier, New York, pp 61–70

    Google Scholar 

  • Mrosovsky N (1971) Hibernation and the hypothalamus. In: Towe A (ed) Neuroscience, series (3). Appleton-Century-Crofts, New York

    Google Scholar 

  • Nagai H (1909) Der Stoffwechsel des Winterschläfers. Z Allg Physiol 9:243–367

    Google Scholar 

  • Nestler JR (1990) Relationships between respiratory quotient and metabolic rate during entry to and arousal from daily torpor in deer mice (Peromyscus maniculatus). Physiol Zool 63:504–515

    Google Scholar 

  • Neumann RL, Cade TJ (1965) Torpidity in the Mexican ground squirrel Citellus mexicanus parvidens (Mearns). Can J Zool 43:133–140

    Google Scholar 

  • O'Connor JM, McKeever WP (1950) The influence of temperature on mammalian tissue oxidation and its relation to the normal body temperature. Proc R Ir Acad Sect B 53:33–44

    Google Scholar 

  • Ortmann S (1992) Bedeutung des Winterschlafes für den Energichaushalt des Alpennmurmeltieres. Verh Dtsch Zool Ges 85:156

    Google Scholar 

  • Pohl H (1962) Temperaturregulation und Tagesperiodik des Stoffwechsels bei Winterschläfern (Untersuchungen an Myotis myotis Borkh. Glis glis L. und Mesocricetus auratus Waterh). Z Vergl Physiol 45:8–153

    Google Scholar 

  • Prinzinger R, Göppel R, Lorenz A, Kulzer E (1981) Body temperature and metabolism in the red-backed mousebird (Colius castanotus) during fasting and torpor. Comp Biochem Physiol 69A:689–692

    Google Scholar 

  • Rautenberg W (1989) Shivering thermogenesis and its interaction with other autonomic controlled systems. In: Malan A, Canguilhem B (eds) Living in the cold II. Elsevier, New York, pp 409–418

    Google Scholar 

  • Reinertsen RE (1989) The regular use of nocturnal hypothermia and torpor during energetically-demanding periods in the annual cycles of birds. In: Malan A, Canguilhem B (eds) Living in the cold II. Elsevier, New York, pp 107–116

    Google Scholar 

  • Ruf T, Heldmaier G (1987) Computerized body temperature telemetry in small animals: use of simple equipment and advanced noise suppression. Comp Biol Med 17:331–340

    Google Scholar 

  • Ruf T, Heldmaier G (1992) The impact of daily torpor on energy requirements in the Djungarian hamster (Phodopus sungorus). Physiol Zool 65

  • Scholander PF, Hock R, Walters V, Hohnson F, Irving L (1950) Heat regulation in some arctic and tropical mammals and birds. Biol Bull 99:237–258

    Google Scholar 

  • Scholl P (1974) Temperaturregulation beim madegassischen Igeltanrek Echinops telfairi (Martin, 1838). J Comp Physiol 89:175–195

    Google Scholar 

  • Snapp BD, Heller HC (1981) Suppression of metabolism during hibernation in ground squirrels (Citellus lateralis). Physiol Zool 54:297–307

    Google Scholar 

  • Snyder GK, Nestler JR (1990) Relationships between body temperature, thermal conductance, Q 10, and energy metabolism during daily torpor and hibernation in rodents. J Comp Physiol B 159:667–675

    Google Scholar 

  • Storey KB (1987) Regulation of liver metabolism by enzyme phosphorylation during mammalian hibernation. J Biol Chem 262:1670–1673

    Google Scholar 

  • Storey KB, Storey JM (1990) Metabolic rate depression and biochemical adaptation in anaerobiosis, hibernation and estivation. Q Rev Biol 65:145–174

    Google Scholar 

  • Tucker VA (1965a) Oxygen consumption, thermal conductance, and torpor in the California pocket mouse Perognathus californicus. J Cell Comp Physiol 65:393–404

    Google Scholar 

  • Tucker VA (1965b) The relation between the torpor cycle and heat exchange in the California Pocket mouse, Perognathus californicus. J Cell Comp Physiol 65:405–414

    Google Scholar 

  • Wang LCH (1978) Energetics and field aspects of mammalian torpor: the Richardson's ground squirrel. In: Wang LCH, Hudson JW (eds) Strategies in cold, natural torpidity and thermogenesis. Academic Press, New York, pp 109–145

    Google Scholar 

  • Wang LCH, Hudson JW (1971) Temperature regulation in normothermic and hibernating eastern chipmunk, Tamias striatus. Comp Biochem Physiol 38A:59–90

    Google Scholar 

  • Wyss OAM (1932) Winterschalf und Wärmehaushalt, untersucht am Siebenschläfer (Myoxus glis). Pflügers Arch Gesamte Physiol Menschen Tiere 229:599–635

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heldmaier, G., Ruf, T. Body temperature and metabolic rate during natural hypothermia in endotherms. J Comp Physiol B 162, 696–706 (1992). https://doi.org/10.1007/BF00301619

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00301619

Key words

Navigation