Skip to main content
Log in

Differential distribution of β-pigment-dispersing hormone (β-PDH)-like immunoreactivity in the stomatogastric nervous system of five species of decapod crustaceans

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

Pigment-dispersing hormone (PDH) acts to disperse pigments within the chromatophores of crustaceans. Using an antibody raised against β-PDH from the fiddler crab Uca pugilator, we characterized the distribution of β-PDH-like immunoreactivity in the stomatogastric nervous system of five decapod crustaceans: the crabs, Cancer borealis and Cancer antennarius, the lobsters, Panulirus interruptus and Homarus americanus, and the crayfish, Procambarus clarkii. No somata were stained in the stomatogastric ganglion (STG) or the esophageal ganglion in any of these species. Intense PDH-like staining was seen in the neuropil of the STG in P. interruptus only. In all 5 species, cell bodies, processes, and neuropil within the paired circumesophageal ganglia (CGs) showed PDH-like staining; the pattern of this staining was unique for each species. In each CG, the β-PDH antibody stained: 1 large cell in C. borealis; 3 small to large cells in C. antennarius; 3–8 medium cells in P. clarkii; 1–4 small cells in H. americanus; and 13–17 small cells in P. interruptus. The smallest cell in each CG in C. antennarius sends its axon, via the inferior esophageal nerves, into the opposite CG; this pair of cells, not labeled in the other species studied, may act as bilateral coordinators of sensory or motor function. These diverse staining patterns imply some degree of evolutionary diversity among these crustaceans. A β-PDH-like peptide may act as a neuromodulator of the rhythms produced by the stomatogastric nervous system of decapod crustaceans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barker DL, Kushner PD, Hooper NK (1979) Synthesis of dopamine and octopamine in the crustacean stomatogastric nervous system. Brain Res 161:99–113

    Google Scholar 

  • Beltz BS, Kravitz EA (1983) Mapping of serotonin-like immunoreactivity in the lobster nervous system. J Neurosci 3:585–602

    Google Scholar 

  • Beltz B, Eisen JS, Flamm R, Harris-Warrick RM, Hooper SL, Marder E (1984) Serotonergic innervation and modulation of the stomatogastric ganglion of three decapod crustaceans (Panulirus interruptus, Homarus americanus and Cancer irroratus). J Exp Biol 109:35–54

    Google Scholar 

  • Bonomelli SL, Rao KR, Riehm JP (1988) Development and application of an ELISA for crustacean β-PDH Am Zool 28:117A

  • Bonomelli SL, Rao KR, Riehm JP (1989) Preparation and evaluation of an antiserum for crustacean α-PDH. Am Zool 29:49A

    Google Scholar 

  • Cazalets J-R, Cournil I, Geffard M, Moulins M (1987) Suppression of oscillatory activity in crustacean pyloric neurons: implication of GABAergic inputs. J Neurosci 7:2884–2893

    Google Scholar 

  • Claiborne BJ, Selverston AI (1984) Histamine as a neurotransmitter in the stomatogastric nervous system of the spiny lobster. J Neurosci 4:708–721

    Google Scholar 

  • Cournil I, Meyrand P, Moulins M (1989) Identification of all GABA immunoreactive projections to the lobster stomatogastric ganglion. Soc Neurosci Abstr 15:366

    Google Scholar 

  • Cournil I, Meyrand P, Moulins M (1990) Lobster stomatogastric GABA system. In: Wiese K, Krenz WD, Tautz J, Reichert H, Mulloney B (eds) Frontiers in crustacean neurobiology. BCR Birkhäuser, Basel, pp 448–454

    Google Scholar 

  • Dando MR, Laverack MS (1969) The anatomy and physiology of the posterior stomach nerve (p.s.n.) in some decapod crustacea. Proc R Soc Lond (Biol) 171:465–482

    Google Scholar 

  • Dickinson PS, Marder E (1989) Peptidergic modulation of a multioscillator system in the lobster. I. Activation of the cardiac sac motor pattern by the neuropeptides proctolin and red pigment-concentrating hormone. J Neurophysiol 61:833–844

    Google Scholar 

  • Dickinson PS, Mecsas C, Marder E (1990) Neuropeptide fusion of two motor pattern generator circuits. Nature 344:155–158

    Google Scholar 

  • Dircksen H, Zahnow CA, Gaus G, Keller R, Rao KR, Riehm JP (1987) The ultrastructure of nerve endings containing pigment-dispersing hormone (PDH) in crustacean sinus glands: identification by an antiserum against a synthetic PDH. Cell Tissue Res 250:377–387

    Google Scholar 

  • Fernlund P (1976) Structure of a light-adapting hormone from the shrimp, Pandalus borealis. Biochem Biophys Acta 439:17–25

    Google Scholar 

  • Fingerman M (1965) Chromatophores. Physiol Rev 45:296–339

    Google Scholar 

  • Fingerman M, Fingerman SW (1972) Evidence for a substance in the eyestalks of brachyurans that darkens the shrimp Crangon septemspinosa. Comp Biochem Physiol 43A:37–46

    Google Scholar 

  • Goldberg D, Nusbaum MP, Marder E (1988) Substance P-like immunoreactivity in the stomatogastric nervous system of the crab Cancer borealis and the lobsters Panulirus interruptus and Homarus americanus. Cell Tissue Res 252:515–522

    Google Scholar 

  • Harris-Warrick RM (1988) Chemical modulation of central pattern generators. In: Cohen AV, Rossignol S, Grillner S (eds) Neural control of rhythmic movements in vertebrates. Wiley, New York, pp 285–331

    Google Scholar 

  • Heinzel H-G, Selverston AI (1988) Gastric mill activity in the lobster. II. Proctolin and octopamine initiate and modulate chewing. J Neurophysiol 59:551–565

    Google Scholar 

  • Hooper SL, Marder E (1984) Modulation of a central pattern generator by two neuropeptides, proctolin and FMRFamide. Brain Res 305:186–191

    Google Scholar 

  • Hooper SL, Marder E (1987) Modulation of the lobster pyloric rhythm by the peptide, proctolin. J Neurosci 7:2097–2112

    Google Scholar 

  • Jan JY, Jan YN (1982) Peptidergic transmission in sympathetic ganglia of the frog. J Physiol (London) 327:219–246

    Google Scholar 

  • Kaestner A (1970) Invertebrate zoology, Crustacea, vol. III, 2nd edn. Wiley, New York

    Google Scholar 

  • Katz PS, Harris-Warrick RM (1989) Serotonergic/cholinergic muscle receptor cells in the crab stomatogastric nervous system. II. Rapid nicotinic and prolonged modulatory effects on neurons in the stomatogastric ganglion. J Neurophysiol 62:571–581

    Google Scholar 

  • Katz PS, Harris-Warrick RM (1990) Actions of identified neuromodulatory neurons in a simple motor system. Trends Neurosci 13:367–373

    Google Scholar 

  • Katz PS, Eigg MH, Harris-Warrick RM (1989) Serotonergic/cholinergic muscle receptor cells in the crab stomatogastric nervous system. I. Identification and characterization of the gastropyloric receptor cells. J Neurophysiol 62:558–570

    Google Scholar 

  • King DG (1976) Organization of crustacean neuropil. I. Patterns of synaptic connections in lobster stomatogastric ganglion. J Neurocytol 5:207–237

    Google Scholar 

  • Kleinholz LH (1936) Crustacean eye-stalk hormone and retinal pigment migration. Biol Bull 70:159–184

    Google Scholar 

  • Kleinholz LH (1966) Hormonal regulation of retinal pigment migration in crustaceans. In: Bernard CG (ed) The functional organization of the compound eye. Pergamon, Oxford, pp 89–101

    Google Scholar 

  • Kleinholz LH (1970) A progress report on the separation and purification of crustacean neurosecretory pigmentary-effector hormones. Gen Comp Endocrinol 14:578–588

    Google Scholar 

  • Kleinholz LH (1975) Purified hormones from the crustacean eyestalk and their physiological specificity. Nature 258:256–257

    Google Scholar 

  • Kleinholz LH, Rao KR, Riehm JP, Tarr GE, Johnson L, Norton S (1986) Isolation and sequence analysis of a pigment-dispersing hormone from eyestalks of the crab, Cancer magister. Biol Bull 170:135–143

    Google Scholar 

  • Kvitash Z, Beltz BS (1989) SCPB and FMRFamide immunoreactivities in Homarus americanus neurons: colocalization of two peptides-or-colabeling of a single peptide? Soc Neurosci Abstr 15:366

    Google Scholar 

  • Mangerich S, Keller R (1988) Localization of pigment-dispersing hormone (PDH) immunoreactivity in the central nervous system of Carcinus maenas and Orconectes limosus (crustacea), with reference to FMRFamide immunoreactivity in O. limosus. Cell Tissue Res 254:199–208

    Google Scholar 

  • Mangerich S, Keller R, Dircksen H, Rao KR, Riehm JP (1987) Immunocytochemical localization of pigment-dispersing hormone (PDH) and its coexistence with FMRFamide-immunoreactive material in the eyestalks of the decapod crustaceans Carcinus maenas and Orconectes limosus. Cell Tissue Res 250:365–375

    Google Scholar 

  • Marder E (1987) Neurotransmitters and neuromodulators. In: Selverston AI, Moulins M (eds) The crustacean stomatogastric nervous system. Springer, Berlin Heidelberg New York, pp 263–300

    Google Scholar 

  • Marder E, Hooper SL (1985) Neurotransmitter modulation of the stomatogastric ganglion of decapod crustaceans. In: Selverston AI (ed) Model neural networks and behavior. Plenum Press, New York, pp 319–337

    Google Scholar 

  • Marder E, Hooper SL, Siwicki KK (1986) Modulatory action and distribution of the neuropeptide proctolin in the crustacean stomatogastric nervous system. J Comp Neurol 243:454–467

    Google Scholar 

  • Marder E, Calabrese RL, Nusbaum MP, Trimmer B (1987) Distribution and partial characterization of FMRFamide-like peptides in the stomatogastric nervous systems of the rock crab, Cancer borealis, and the spiny lobster, Panulirus interruptus. J Comp Neurol 259:150–163

    Google Scholar 

  • Maynard DM, Dando MR (1974) The structure of the stomatogastric neuromuscular system in Callinectes sapidus, Homarus americanus and Panulirus argus (Decapoda Crustacea). Philos Trans R Soc Lond (Biol) 268:161–220

    Google Scholar 

  • Maynard EA (1971) Electron microscopy of stomatogastric ganglion in the lobster, Homarus americanus. Tissue Cell 3:137–160

    Google Scholar 

  • McCallum ML, Rao KR, Riehm JP, Mohrherr CJ, Morgan WT (1988) Isolation of a β-PDH analog from the crayfish, Procambarus clarkii. Am Zool 28:117A

    Google Scholar 

  • Mohrherr CJ, Rao KR, Riehm JP, Morgan WT (1990) Isolation of β-PDH from sinus glands of the blue crab, Callinectes sapidus. Am Zool 30:28A

    Google Scholar 

  • Mortin LI, Marder E (1989) Localization of pigment-dispersing hormone (PDH)-like immunoreactivity in the crustacean stomatogastric nervous system. Soc Neurosci Abstr 15:366

    Google Scholar 

  • Mortin LI, Marder E (1990) Crustacean cardioactive peptide (CCAP): a hormone neuromodulator of the stomatogastric nervous system. Soc Neurosci Abstr 16:1131

    Google Scholar 

  • Moulins M, Nagy F (1981) Participation of an unpaired motor neurone in the bilaterally organized oesophageal rhythm in the lobsters Jasus lalandii and Palinurus vulgaris. J Exp Biol 90:205–230

    Google Scholar 

  • Nagy F, Dickinson PS (1983) Control of a central pattern generator by an identified modulatory interneurone in Crustacea. I. Modulation of the pyloric motor output. J Exp Biol 105:33–58

    Google Scholar 

  • Nusbaum MP, Marder E (1988) A neuronal role for a peptide similar to crustacean red pigment concentrating hormone: neuromodulation of the pyloric rhythm in the crab, Cancer borealis. J Exp Biol 135:165–181

    Google Scholar 

  • Nusbaum MP, Marder E (1989a) A modulatory proctolin-containing neuron (MPN). I. Identification and characterization. J Neurosci 9:1591–1599

    Google Scholar 

  • Nusbaum MP, Marder E (1989b) A modulatory proctolin-containing neuron (MPN). II. State-dependent modulation of rhythmic motor activity. J Neurosci 9:1600–1607

    Google Scholar 

  • Nusbaum MP, Cournil I, Golowasch J, Marder E (1989) Modulating rhythmic motor activity with a proctolin- and GABA-containing neuron. Soc Neurosci Abstr 15:366

    Google Scholar 

  • Phillips JM, Rao KR, Riehm JP, Morgan WT (1988) Isolation and characterization of a pigment dispersing hormone from the shrimp Penaeus aztecus. Soc Neurosci Abstr 14:534

    Google Scholar 

  • Phillips JM, Fox DL, Bonomelli S, Rao KR, Riehm JP (1990) Immunocytochemical studies of the distribution of α- and β-PDH in Callinectes and Pandalus. Am Zool 30:28A

    Google Scholar 

  • Rao KR (1985) Pigmentary effectors. In: Bliss DE, Mantel LH (eds) The biology of crustacea, vol 9. Integument, pigments, and hormonal processes. Academic Press, Orlando, pp 395–462

    Google Scholar 

  • Rao KR, Riehm JP (1988) Pigment-dispersing hormones: a novel family of neuropeptides from arthropods. Peptides 9 [Suppl 1]: 153–159

    Google Scholar 

  • Rao KR, Riehm JP (1989) The pigment-dispersing hormone family: chemistry, structure-activity relations, and distribution. Biol Bull 177:225–229

    Google Scholar 

  • Rao KR, Riehm JP, Zahnow CA, Kleinholz LH, Tarr GE, Johnson L, Norton S, Landau M, Semmes OJ, Sattelberg RM, Jorenby WH, Hintz MF (1985) Characterization of a pigment-dispersing hormone in eyestalks of the fiddler crab Uca pugilator. Proc Natl Acad Sci USA 82:5319–5322

    Google Scholar 

  • Rao KR, Mohrherr CJ, Riehm JP, Zahnow CA, Norton S, Johnson L, Tarr GE (1987) Primary structure of an analog of crustacean pigment-dispersing hormone from the lubber grasshopper Romalea microptera. J Biol Chem 262:2672–2675

    Google Scholar 

  • Rao KR, Kleinholz LH, Riehm JP (1989) Characterization of three forms of pigment-dispersing hormone from the shrimp Pandalus jordant. Soc Neurosci Abstr 15:367

    Google Scholar 

  • Robertson RM, Moulins M (1981) Control of rhythmic behaviour by a hierarchy of linked oscillators in Crustacea. Neurosci Lett 21:111–116

    Google Scholar 

  • Russell DF (1976) Rhythmic excitatory inputs to the lobster stomatogastric ganglion. Brain Res 101:582–588

    Google Scholar 

  • Schram FR (1982) The fossil record and evolution of Crustacea. In: Abele LG (ed) The biology of crustacea, vol 1. Systematics, the fossil record, and biogeography. Academic Press, New York, pp 93–147

    Google Scholar 

  • Selverston AI, Moulins M (1987) The crustacean stomatogastric nervous system. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Simmers J, Moulins M (1988a) A disynaptic sensorimotor pathway in the lobster stomatogastric system. J Neurophysiol 59:740–756

    Google Scholar 

  • Simmers J, Moulins M (1988b) Nonlinear interneuronal properties underlie integrative flexibility in a lobster disynaptic sensorimotor pathway. J Neurophysiol 59:757–777

    Google Scholar 

  • Siwicki KK, Bishop CA (1986) Mapping of proctolin-like immunoreactivity in the nervous systems of lobster and crayfish. J Comp Neurol 243:435–453

    Google Scholar 

  • Thurman CL (1988) Rhythmic physiological color change in Crustacea: a review. Comp Biochem Physiol 91:171–185

    Google Scholar 

  • Turrigiano GG, Selverston AI (1989) Cholecystokinin-like peptide is a modulator of a crustacean central pattern generator. J Neurosci 9:2486–2501

    Google Scholar 

  • Turrigiano GG, Selverston AI (1990) A cholecystokinin-like hormone activates a feeding-related neural circuit in lobster. Nature 344:866–868

    Google Scholar 

  • Vedel J-P, Moulins M (1977) Functional properties of interganglionic motor neurons in the stomatogastric nervous system of the rock lobster. J Comp Physiol 118:307–325

    Google Scholar 

  • Webb HM (1950) Diurnal variations of response to light in the fiddler crab, Uca. Physiol Zool 23:316–337

    Google Scholar 

  • Weimann JM, Marder E (1989) Activation of the gastric rhythm of the crab stomatogastric ganglion by SDRNFLRFamide. Soc Neurosci Abstr 15:1047

    Google Scholar 

  • Welsh JH (1930) Diurnal rhythm of the distal pigment cells in the eyes of certain crustaceans. Proc Natl Acad Sci USA 16:386–395

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mortin, L.I., Marder, E. Differential distribution of β-pigment-dispersing hormone (β-PDH)-like immunoreactivity in the stomatogastric nervous system of five species of decapod crustaceans. Cell Tissue Res 265, 19–33 (1991). https://doi.org/10.1007/BF00318135

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00318135

Key words

Navigation