Skip to main content
Log in

The development of the static vestibulo-ocular reflex in the Southern Clawed Toad,Xenopus laevis

II. Animals with acute vestibular lesions

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

Acute hemilabyrinthectomized tadpoles of the Southern Clawed Toad (Xenopus laevis), younger than stage 47 (about 6 days old), perform no static vestibulo-ocular reflex (Fig. 1). Older acute lesioned animals respond with compensatory movements of both eyes during static roll. Their threshold roll angle, however, depends on the developmental stage. For lesioned stages 60 to 64, it is 75° while stage 52 to 56 tadpoles respond even during a lateral roll of 15° (Figs. 1 and 2). Selective destruction of single macula and crista organs revealed that the static vestibulo-ocular reflex is evoked by excitation of the macula utriculi (Figs. 3 and 4) even in young tadpoles.

The results demonstrate that bilateral projections of the vestibular apparatus must have developed at the time of occurrence of the static VOR, that during the first week of life the excitation of a single labyrinth is subthreshold (Fig. 1). We discuss the possibility whether the loss of the static VOR during the prometamorphic period of life (Fig. 2) is caused by increasing formation of multimodal connections in the vestibular pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

α :

eye angle

γ :

roll angle

α(γ) :

response characteristic

A :

response amplitude

G :

response gain

VOR :

vestibulo-ocular reflex

References

  • Anniko M (1983) Embryonic development of vestibular sense organs and their innervation. In: Romand R (ed) Development of auditory and vestibular systems. Academic Press, New York London, pp 375–423

    Google Scholar 

  • Ashton JA, Boddy A, Donaldson IML (1984) Input from proprioceptors in the extrinsic ocular muscles to the vestibular nuclei in the giant toad,Bufo marinus. Exp Brain Res 53:409–419

    Google Scholar 

  • Brodal A (1974) Anatomy of the vestibular nuclei and their connections. In: Kornhuber HH (ed) Vestibular system. Part I: Basic mechanisms (Handbook of sensory physiology, vol VI/1) Springer, Berlin Heidelberg New York, pp 239–352

    Google Scholar 

  • Dieringer N, Cochran SL, Precht W (1983) Differences in the central organization of gaze stabilizing reflexes between frog and turtle. J Comp Physiol 153:495–508

    Google Scholar 

  • Gacek RR (1980) Neuroanatomical correlates of vestibular function. Ann Oto-Rhinol-Laryngol 89:2–5

    Google Scholar 

  • Hess BJM, Precht W (1984) Identification of vestibular sense organs responsible for maculo-utricular reflexes in the frog. Exp Brain Res 55:570–573

    Google Scholar 

  • Hillman DE (1976) Morphology of peripheral and central vestibular systems. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 452–480

    Google Scholar 

  • Horn E, Lang HG, Rayer B (1986) The development of the static vestibulo-ocular reflex in the Southern Clawed Toad,Xenopus laevis. I. Intact animals. J Comp Physiol A 159:869–878

    Google Scholar 

  • Ito M, Nisimaru N, Yamamoto M (1976a) Pathways from the vestibulo-ocular reflex excitation arising from semicircular canals of rabbits. Exp Brain Res 24:257–271

    Google Scholar 

  • Ito M, Nisimaru N, Yamamoto M (1976b) Postsynaptic inhibition of oculomotor neurons involved in vestibulo-ocular reflexes arising from semicircular canals of rabbits. Exp Brain Res 24:273–283

    Google Scholar 

  • Matesz C (1979) Central projection of the VIIIth cranial nerve in the frog. Neuroscience 4:2061–2071

    Google Scholar 

  • Nieuwkoop PD, Faber J (1975) Normal table ofXenopus laevis (Daudin). Hubrecht Laboratory, Utrecht

    Google Scholar 

  • Paterson NF (1948) The development of the inner ear ofXenopus laevis. Zool Soc (Lond) 119:269–291

    Google Scholar 

  • Precht W (1976) Physiology of the peripheral and central vestibular system. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 481–512

    Google Scholar 

  • Precht W (1978) Neuronal operations in the vestibular system. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Rayer B, Cagol E, Horn E (1983) Compensation of vestibular induced deficits in relation to the development of the Southern Clawed Toad,Xenopus laevis Daudin. J Comp Physiol 151:487–498

    Google Scholar 

  • Romeis B (1968) Mikroskopische Technik. Oldenburg, München Wien

    Google Scholar 

  • Sachs L (1974) Angewandte Statistik. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Schöne H (1964) Über die Arbeitsweise der Statolithenorgane bei Plattfischen. Biol Jahrheft 4:135–156

    Google Scholar 

  • Shelton PMJ (1970) The lateral line system at metamorphosis inXenopus laevis Daudin. J Embryol Exp Morphol 24:511–524

    Google Scholar 

  • Will U, Luhede G, Görner P (1985a) The area octavo-lateralis inXenopus laevis. I. The primary afferent projections. Cell Tissue Res 239:147–161

    Google Scholar 

  • Will U, Luhede G, Görner P (1985b) The area octavo-lateralis inXenopus laevis. II. Second order projections and cytoarchitecture. Cell Tissue Res 239:163–175

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horn, E., Mack, R. & Lang, H.G. The development of the static vestibulo-ocular reflex in the Southern Clawed Toad,Xenopus laevis . J. Comp. Physiol. 159, 879–885 (1986). https://doi.org/10.1007/BF00603741

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00603741

Keywords

Navigation