Skip to main content
Log in

Reduction of metabolism during hibernation and daily torpor in mammals and birds: temperature effect or physiological inhibition?

Journal of Comparative Physiology B Aims and scope Submit manuscript

Summary

The present study addresses the controversy of whether the reduction in energy metabolism during torpor in endotherms is strictly a physical effect of temperature (Q10) or whether it involves an additional metabolic inhibition. Basal metabolic rates (BMR; measured as oxygen consumption,\(\dot V_{O_2 }\)), metabolic rates during torpor, and the corresponding body temperatures (T b) in 68 mammalian and avian species were assembled from the literature (n=58) or determined in the present study (n=10). The Q10 for change in\(\dot V_{O_2 }\) between normothermia and torpor decreased from a mean of 4.1 to 2.8 with decreasingT b from 30 to <10°C in hibernators (species that show prolonged torpor). In daily heterotherms (species that show shallow, daily torpor) the Q10 remained at a constant value of 2.2 asT b decreased. In hibernators with aT b<10°C, the Q10 was inversely related to body mass. The increase of mass-specific metabolic rate with decreasing body mass, observed during normothermia (BMR), was not observed during torpor in hibernators and the slope relating metabolic rate and mass was almost zero. In daily heterotherms, which had a smaller Q10 than the hibernators, no inverse relationship between the Q10 and body mass was observed, and consequently the metabolic rate during torpor at the sameT b was greater than that of hibernators. These findings show that the reduction in metabolism during torpor of daily heterotherms and large hibernators can be explained largely by temperature effects, whereas a metabolic inhibition in addition to temperature effects may be used by small hibernators to reduce energy expenditure during torpor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BMR :

basal metabolic rate

References

  • Augee ML, Ealey EHM (1968) Torpor in the echidna,Tachyglossus aculeatus. J Mammal 49:446–454

    Google Scholar 

  • Barnes BM, Kretzmann M, Licht P, Zucker I (1986) The influence of hibernation on testes growth and spermatogenesis in the golden-mantled ground squirrel,Spermophilus lateralis. Biol Reprod 35:1289–1297

    Google Scholar 

  • Bartholomew GA (1982) Energy metabolism. In: Gordon MS (ed) Animal Physiology. MacMillan, New York, pp 46–93

    Google Scholar 

  • Bartholomew GA, Hudson JW (1960) Aestivation in the Mohave ground squirrel,Citellus mohavensis. Bull Mus Comp Zool 124:193–208

    Google Scholar 

  • Bartholomew GA, Hudson JW (1962) Hibernation, estivation, temperature regulation, evaporative water loss, and heart rate of the pygmy possumCercaertus nanus. Physiol Zool 35:94–107

    Google Scholar 

  • Bartholomew GA, Dawson WR, Lasiewski RC (1970) Thermoregulation and heterothermy in some of the smaller flying foxes (Megachiroptera) of New Guinea. Z Vergl Physiol 70:196–209

    Google Scholar 

  • Bartholomew GA, Vleck CM, Bucher TL (1983) Energy metabolism and nocturnal hypothermia in two tropical passerine frugivores,Manacus vitellinus andPipra mentalis. Physiol Zool 56:370–379

    Google Scholar 

  • Bickler PE (1984) CO2 balance of a heterothermic rodent: comparison of sleep, torpor, and awake states. Am J Physiol 246:R49-R55

    Google Scholar 

  • Borgmann AJ, Moon TW (1976) Enzymes of the normothermic and hibernating bat,Myotis lucifugus: temperature as a modulator of pyruvate kinase. J Comp Physiol B 107:185–199

    Google Scholar 

  • Cranford JA (1983) Body temperature, heart rate and oxygen consumption of normothermic and heterothermic western jumping mice (Zapus princeps). Comp Biochem Physiol A 74:595–599

    Google Scholar 

  • Deavers DR, Hudson JW (1981) Temperature regulation in two rodents (Clethrionomys gapperi andPeromyscus leucopus) and a shrew (Blarina brevicaudata) inhabiting the same environment. Physiol Zool 54:94–108

    Google Scholar 

  • Dodgen LL, Blood FR (1956) Energy sources in the bat. Am J Physiol 187:151–154

    Google Scholar 

  • Fleming MR (1980) Thermoregulation and torpor in the sugar glider,Petaurus breviceps (Marsupialia: Petauridae). Aust J Zool 28:521–534

    Google Scholar 

  • Fleming MR (1985a) The thermal physiology of the feathertail glider,Acrobates pygmaeus (Marsupialia: Burramyidae). Aust J Zool 33:667–681

    Google Scholar 

  • Fleming MR (1985b) The thermal physiology of the mountain pygmy possum,Burramys parvus (Marsupialia: Burramyidae). Aust Mammal 8:79–90

    Google Scholar 

  • Florant G, Heller HC (1977) CNS regulation of body temperature in euthermic and hibernating marmots (Marmota flaviventris). Am J Physiol 232:R203-R208

    Google Scholar 

  • Fons R, Sicard R (1976) Contribution á la conaissance du métabolisme énergétique chez deux crocidurinae:Suncus etruscus (Savi, 1822) etCrocidura russula (Hermann, 1780) (Insectivora, Soricidae). Mammalia 40:299–311

    Google Scholar 

  • French AR (1982) Effects of temperature on the duration of arousal episodes during hibernation. J Appl Physiol 52:216–220

    Google Scholar 

  • French AR (1985) Allometries of the duration of torpid and euthermic intervals during mammalian hibernation: a test of the theory of metabolic control of the timing of changes in body temperature. J Comp Physiol B 156:13–19

    Google Scholar 

  • Frey H (1979) La température corporelle deSuncus etruscus (Soricidae, Insectivora) au cours de l'activité, du respos normothermique et de la torpeur. Rev Suisse Zool 86:653–662

    Google Scholar 

  • Frey H (1980) Le métabolisme énergétique deSuncus etruscus (Soricidae, Insectivora) en torpeur. Rev Suisse Zool 87:739–748

    Google Scholar 

  • Geiser F (1986a) Temperature regulation in heterothermic marsupials. In: Heller HC, Musacchia XJ, Wang LCH (eds) Living in the cold. Elsevier, New York, pp 207–212

    Google Scholar 

  • Geiser F (1986b) Thermoregulation and torpor in the kultarr,Antechinomys laniger (Marsupialia: Dasyuridae). J Comp Physiol B 156:751–757

    Google Scholar 

  • Geiser F (1987) Hibernation and daily torpor in two pygmy possums (Cercartetus spp., Marsupialia). Physiol Zool 60:93–102

    Google Scholar 

  • Geiser F, Kenagy GJ (1987) Polyunsaturated lipid diet lengthens torpor and reduces body temperature in a hibernator. Am J Physiol 252:R897-R901

    Google Scholar 

  • Geiser F, McMurchie EJ (1984) Differences in the thermotropic behaviour of mitochondrial membrane respiratory enzymes from homeothermic and heterothermic endotherms. J Comp Physiol B 155:125–133

    Google Scholar 

  • Geiser F, Augee ML, McCarron HCK, Raison JK (1984) Correlates of torpor in the insectivorous dasyurid marsupialSminthopsis murina. Aust Mammal 7:185–191

    Google Scholar 

  • Geiser F, Matwiejczyk L, Baudinette RV (1986) From ectothermy to heterothermy: the energetics of the kowari,Dasyuroides byrnei (Marsupialia: Dasyuridae). Physiol Zool 59:220–229

    Google Scholar 

  • Geiser F, Baudinette RV (1987) Seasonality of torpor and thermoregulation in three dasyurid marsupials. J Comp Physiol B 157:335–344

    Google Scholar 

  • Hainsworth FR, Wolf LL (1970) Regulation of oxygen consumption and body temperature during torpor in a hummingbird,Eulampis jugularis. Science 168:368–369

    Google Scholar 

  • Hammel HT, Dawson TJ, Adams RM, Andersen HT (1968) Total calorimetric measurements onCitellus lateralis in hibernation. Physiol Zool 41:341–357

    Google Scholar 

  • Hand SC, Somero GN (1983) Phosphofructokinase of the hibernatorCitellus beecheyi: temperature and pH regulation of activity via influences of the tetramer-dimer equilibrium. Physiol Zool 56:380–388

    Google Scholar 

  • Harlow HJ (1981) Torpor and other physiological adaptations of the badger (Taxidea taxus) to cold environments. Physiol Zool 54:267–275

    Google Scholar 

  • Hayssen V, Lacy RC (1985) Basal metabolic rates in mammals: taxonomic differences in the allometry of BMR and body mass. Comp Biochem Physiol 81A:741–754

    Google Scholar 

  • Heldmaier G, Steinlechner S (1981a) Seasonal pattern and energetics of short daily torpor in the Djungarian hamster,Phodopus sungorus. Oecologia 48:265–270

    Google Scholar 

  • Heldmaier G, Steinlechner S (1981b) Seasonal control of energy requirements for thermoregulation in the Djungarian hamster (Phodopus sungorus), living in natural photoperiod. J Comp Physiol B 142:429–437

    Google Scholar 

  • Heller HC, Hammel HT (1972) CNS control of body temperature during hibernation. Comp Biochem Physiol 41A:349–359

    Google Scholar 

  • Henshaw RE (1968) Thermoregulation during hibernation: application of Newton's law of cooling. J Theoret Biol 20:79–90

    Google Scholar 

  • Herreid CF, Schmidt-Nielsen K (1966) Oxygen consumption, temperature, and water loss in bats from different environments. Am J Physiol 211:1108–1112

    Google Scholar 

  • Hildwein G (1970) Capacités thermorégulatrices d'un mammifère insectivore primitive, le Tenrec; leurs variations saisonnières. Arch Sci Physiol 24:55–71

    Google Scholar 

  • Hildwein G, Malan A (1970) Capacités thermorégulatrices du hérisson en été, en hiver, en l'absence d'hibernation. Arch Sci Physiol 24:133–143

    Google Scholar 

  • Hildwein G (1972) Cycle saisonnier des capacités thermorégulatrices, en ambiance neutre et chaude, d'un insectivore de Madagascar, L'ericulus (Setifer setosus). Arch Sci Physiol 26:325–337

    Google Scholar 

  • Hill RW (1975) Daily torpor inPeromyscus leucopus on a adequate diet. Comp Biochem Physiol 51A:413–423

    Google Scholar 

  • Hock RJ (1951) The metabolic rates and body temperatures of bats. Biol Bull 101:289–299

    Google Scholar 

  • Hock RJ (1960) Seasonal variations in physiologic functions of Arctic ground squirrels and black bears. Bull Mus Comp Zool 124:155–171

    Google Scholar 

  • Hudson JW (1965) Temperature regulation and torpidity in the pygmy mouse,Baiomys tailori. Physiol Zool 38:243–254

    Google Scholar 

  • Hudson JW, Deavers DR (1973) Thermoregulation at high ambient temperatures of six species of ground squirrels (Spermophilus spp.) from different habitats. Physiol Zool 46:95–109

    Google Scholar 

  • Hudson JW, Scott IM (1979) Daily torpor in the laboratory mouseMus musculus var. albino. Physiol Zool 52:205–218

    Google Scholar 

  • Hulbert AJ, Hudson JW (1976) Thyroid function in a hibernatorSpermophilus tridecemlineatus. Am J Physiol 230:1211–1216

    Google Scholar 

  • Johansen K, Krog J (1959) Diurnal body temperature variations and hibernation in the birch mouse,Sicista betulina. Am J Physiol 196:1200–1204

    Google Scholar 

  • Kayser C (1939) Exchanges respiratoires des hibernants réveillés. Ann Physiol Physicochim Biol 15:1087–1219

    Google Scholar 

  • Kayser C (1960) Consommation d'oxygène et température centrale au cours de l'hiver austral de deux Insectivores de Madagascar,Centedes ecaudatus etSetifer setosus. CR Soc Biol Paris 154:1873–1876

    Google Scholar 

  • Kayser C (1961) The physiology of natural hibernation. Pergamon Press, Oxford

    Google Scholar 

  • Kayser C (1964) La dépense d'énergie des mammiferes en hibernation. Arch Sci Physiol 18:137–150

    Google Scholar 

  • Kenagy GJ, Vleck D (1982) Daily temporal organization of metabolism in small mammals: adaptation and diversity In: Aschoff J, Daan S, Groos G (eds) Vertebrate circadian systems. Springer, Berlin Heidelberg New York, pp 322–337

    Google Scholar 

  • Kennedy PM, McFarlane WV (1971) Oxygen consumption and water turnover of the fat-tailed marsupialsDasycercus cristicauda andSmithopsis crassicaudata. Comp Biochem Physiol 40A:723–732

    Google Scholar 

  • Krilowicz BL (1985) Ketone body metabolism in a ground squirrel during hibernation and fasting. Am J Physiol 249:R462-R470

    Google Scholar 

  • Lasiewski RC (1963) Oxygen consumption of torpid, resting, active and flying hummingbirds. Physiol Zool 36:122–140

    Google Scholar 

  • Lyman CP (1948) The oxygen consumption and temperature regulation in hibernating hamsters. J Exp Zool 109:55–78

    Google Scholar 

  • Lyman CP (1958) Oxygen consumption, body temperature and heart rate of woodchucks entering hibernation. Am J Physiol 194:83–91

    Google Scholar 

  • Lyman CP, Willis JS, Malan A, Wang LCH (1982) Hibernation and torpor in mammals and birds. Academic Press, New York

    Google Scholar 

  • Lynch GR, Vogt FD, Smith HR (1978) Seasonal study of spontaneous daily torpor in the white-footed mouse,Peromyscus leucopus. Physiol Zool 51:289–299

    Google Scholar 

  • MacMillen RE (1965) Aestivation in the cactus mousePeromyscus eremicus. Comp Biochem Physiol 16:227–247

    Google Scholar 

  • MacMillen RE, Greenaway PC (1978) Adjustment of energy and water metabolism to drought in an Australian arid-zone crab. Physiol Zool 51:230–240

    Google Scholar 

  • Malan A (1980) Enzyme regulation, metabolic rate and acidbase state in hibernation. In: Gilles R (ed) Animals and environmental fitness. Pergamon Press, Oxford, pp 487–501

    Google Scholar 

  • Malan A (1986) pH as a control factor in hibernation. In: Heller HC, Musacchia XJ, Wang LCH (eds) Living in the cold. Elsevier, New York, pp 61–70

    Google Scholar 

  • Morhardt JE (1970) Body temperatures of white-footed mice (Peromyscus sp.) during daily torpor. Comp Biochem Physiol 33:423–439

    Google Scholar 

  • Morrison PR, McNab BK (1962) Daily torpor in a Brazilian murine opossum (Marmosa). Comp Biochem Physiol 6:57–68

    Google Scholar 

  • Morrison P, Ryser FA (1962) Metabolism and body temperature in a small hibernator, the meadow jumping mouse,Zapus hudsonicus. J Cell Comp Physiol 60:169–180

    Google Scholar 

  • Morton SR, Lee AK (1978) Thermoregulation and metabolism inPlanigale maculata (Marsupialia: Dasyuridae). J Therm Biol 3:117–120

    Google Scholar 

  • Mrosovsky N (1971) Hibernation and the hypothalamus. Appleton Century Crofts, New York

    Google Scholar 

  • Muchalski AE, Rybak EN (1978) Energy consumption of resting and hibernating meadow jumping mice. J Mammal 59:435–437

    Google Scholar 

  • Nagel A (1985) Sauerstoffverbrauch, Temperaturregulation und Herzferquenz bei europäischen Spitzmäusen (Soricidae). Z Säugetierkd 50:249–266

    Google Scholar 

  • Newmann RL, Cade TJ (1964) Torpidity in the Mexican ground squirrelCitellus mexicanus parvidens (Mearns). Can J Zool 43:133–140

    Google Scholar 

  • Pearson OP (1950) The metabolism of hummingbirds. Condor 52:145–152

    Google Scholar 

  • Pohl H (1961) Temperaturregulation und Tagesperiodik des Stoffwechsels bei Winterschläfern. Z Vergl Physiol 45:109–153

    Google Scholar 

  • Seymour RS (1973) Energy metabolism of dormant spadefoot toads (Scaphiopus) Copeia 1973:435–445

    Google Scholar 

  • Snapp BD, Heller HC (1981) Suppression of metabolism during hibernation in ground squirrels (Citellus lateralis). Physiol Zool 54:297–307

    Google Scholar 

  • Steffen JM, Riedesel MC (1982) Pulmonary ventilation and cardiac activity in hibernating and arousing golden-mantled ground squirrels (Spermophilus lateralis). Cryobiology 19:83–91

    Google Scholar 

  • Thäti H (1978) Seasonal differences in O2 consumption and respiratory quotient in a hibernator (Erinaceus europaeus L.). Ann Zool Fennici 15:69–75

    Google Scholar 

  • Thompson SD (1985) Subspecific differences in metabolism, thermoregulation, and torpor in the western harvest mouseReithrodontomys megalotis. Physiol Zool 58:430–444

    Google Scholar 

  • Tucker VA (1965) Oxygen consumption, thermal conductance, and torpor in the California pocket mousePerognathus californicus. J Cell Comp Physiol 65:393–404

    Google Scholar 

  • Twente JW, Twente J, Moy RM (1977) Regulation of arousal from hibernation by temperature in three species ofCitellus. J Appl Physiol 42:191–195

    Google Scholar 

  • Wallis RL (1976) Torpor in the dasyurid marsupialAntechinus stuartii. Comp Biochem Physiol 53A:319–322

    Google Scholar 

  • Wang LCH, Hudson JW (1970) Some physiological aspects of temperature regulation in the normothermic and torpid hispid pocket mouse,Perognathus hispidus. Comp Biochem Physiol 32:275–293

    Google Scholar 

  • Wang LCH, Hudson JW (1971) Temperature regulation in normothermic and hibernating eastern chipmunk,Tamias striatus. Comp Biochem Physiol 38A:59–90

    Google Scholar 

  • Wang LCH (1978) Energetic and field aspects of mammalian torpor: the Richardson's ground squirrel. In: Wang LCH, Hudson JW (eds) Strategies in cold. Academic Press, New York, pp 109–145

    Google Scholar 

  • Withers PC (1977) Respiration, metabolism, and heat exchange of euthermic and torpid poorwills and hummingbirds. Physiol Zool 50:43–52

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geiser, F. Reduction of metabolism during hibernation and daily torpor in mammals and birds: temperature effect or physiological inhibition?. J Comp Physiol B 158, 25–37 (1988). https://doi.org/10.1007/BF00692726

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00692726

Keywords

Navigation