Skip to main content
Log in

Cloned β1,4N-acetylgalactosaminyltransferase: subcellular localization and formation of disulfide bonded species

  • Papers
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Cloned human β1,4N-acetylgalactosaminyltransferase (GalNAcT) catalyses the synthesis of the glycosphingolipids GM2, GD2, and gangliotriosylceramide. To determine the subcellular location of this enzyme and whether it exists in intermolecular disulfide bonded species, we stably transfected Chinese hamster ovary (CHO) cells with three myc epitope-tagged forms of the GalNAcT gene: the native enzyme; the lumenal domain of GalNAcT fused to the cytoplasmic and transmembrane domains ofN-acetylglucosaminyltransferase I (GNT); and the transmembrane and lumenal domains of GalNAcT fused to the cytoplasmic domain of the Iip33 form of human invariant chain in order to retain the enzyme in the endoplasmic reticulum (ER). Immunoelectron microscopic analysis with anti-myc revealed that GalNAcT/myc was present throughout the Golgi stack, the GNT/GalNAcT/myc form was restricted primarily to the medial Golgi cisternae, and the Iip33/GalNAcT/myc form was restricted to the ER. Cells transfected with each of the three constructs contained high levels of GM2 synthase activityin vitro, but only the GalNAcT/myc form and the GNT/GalNAcT/myc forms were able to synthesize the GM2 productin vivo. The enzyme produced by all three constructs was present in the transfected cells in a disulfide bonded form having a molecular size consistent with that of a homodimer or higher aggregate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

GSL:

glycosphingolipid(s)

CHO:

Chinese hamster ovary

GSL structures: GM2:

GalNAcβ1,4(NeuAcα2,3)Galβ1,4GlcCer

GD2:

GalNacβ1,4(NeuAcα2,8NeuAcα2,3)Galβ1,4GlcCer

GM3:

NeuAcα2,3Galβ1,4GlcCer

Gg3 :

GalNAcβ1,4Galβ1,4GlcCer

LacCer:

Galβ1,4GlcCer

GlcCer:

glucosylceramide

PBS-BSA:

phosphate buffered saline pH 7.4 containing 1% bovine serum albumin

GalNAcT:

N-acetylgalactosaminyltransferase

GNT:

N-acetylglucosaminyltransferase I

Iip33:

p33 form of human invariant chain

HPTLC:

high performance thin layer chromatography

PCR:

polymerase chain reaction

BFA:

Brefeldin A

References

  1. Machamer CE (1993)Curr Opin Cell Biol 5: 606–12.

    Google Scholar 

  2. Nilsson T, Slusarewicz P, Hoe MH, Warren G (1993)FEBS Lett 330: 1–4.

    Google Scholar 

  3. Nagata Y, Yamashiro S, Yodoi J, Lloyd KO, Furukawa K (1992)J Biol Chem 267: 12082–89.

    Google Scholar 

  4. Lutz MS, Jaskiewicz E, Darling DS, Furukawa K, Young WW, Jr (1994)J Biol Chem 269: 29227–31.

    Google Scholar 

  5. Hidari KI-PJ, Ichikawa S, Furukawa K, Yamasaki M, Hirabayashi Y (1994)Biochem J 303: 957–65.

    Google Scholar 

  6. Yamashiro S, Haraguchi M, Furukawa K, Takamiya K, Yamamoto A, Nagata Y, Lloyd KO, Shiku H (1995)J Biol Chem 270: 6149–55.

    Google Scholar 

  7. Kumar R, Yang J, Eddy RL, Byers MG, Shows TB, Stanley P (1992)Glycobiology 2: 383–93.

    Google Scholar 

  8. Lotteau V, Teyton L, Peleraux A, Nilsson T, Karlsson L, Schmid S, Quaranta V, Peterson PA (1990)Nature 348: 600–5.

    Google Scholar 

  9. Evans GI, Lewis GK, Ramsay G, Bishop JM (1985)Mol Cell Biol 5: 3610–16.

    Google Scholar 

  10. Tang BL, Wong SH, Low SH, Hong W (1992)J Biol Chem 267: 10122–26.

    Google Scholar 

  11. Kozak M (1983)Microbiol Rev 47: 1–45.

    Google Scholar 

  12. Natoli EJ Jr, Livingston PO, Pukel CS, Lloyd KO, Wiegandt H, Szalas J, Oettgen HF, Old LJ (1986)Cancer Res 46: 4116–20.

    Google Scholar 

  13. Young WW Jr, MacDonald EMS, Nowinski RC, Hakomori S (1979)J Exp Med 150: 1008–19.

    Google Scholar 

  14. Dippold WG, Lloyd KO, Li LTC, Ikeda H, Oettgen HF, Old LJ (1980)Proc Natl Acad Sci USA 77: 6114–18.

    Google Scholar 

  15. White T, Mandel U, Orntoft TF, Dabelsteen E, Karkov J, Kubeja M, Hakomori S, Clausen H (1990)Biochemistry 29: 2740–47.

    Google Scholar 

  16. Sambrook J, Fritsch EF, Maniatis T (1989)Molecular Cloning: A Laboratory Manual, 2nd Ed, Vol. 1–3, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  17. Mount SL, Taatjes DJ, von Turkovich M, Tindle BH, Trainer TD (1993)Ultrastruct Pathol 17: 547–57.

    Google Scholar 

  18. Taatjes DJ, Roth J, Shaper NL, Shaper JH (1992)Glycobiology 2: 579–89.

    Google Scholar 

  19. Slot JW, Geuze HJ (1985)Eur J Cell Biol 38: 87–93.

    Google Scholar 

  20. Roth J, Taatjes DJ, Warhol MJ (1989)Histochemistry 92: 47–56.

    Google Scholar 

  21. Kasahara K, Guo L, Nagai Y, Sanai Y (1994)Anal Biochem 218: 224–26.

    Google Scholar 

  22. Schnaar RL (1994)Methods Enzymol 230: 348–70.

    Google Scholar 

  23. Smith PK, Krohn RI, Hermanson GT, Mallic AK, Gartner FH, Provenzano MD, Fujimoto EK, Gocke NM, Olson BJ, Klenk DC (1985)Anal Biochem 150: 76–85.

    Google Scholar 

  24. Saito T, Hakomori S (1971)J Lipid Res 12: 257–59.

    Google Scholar 

  25. Dunphy WG, Rothman JE (1985)Cell 42: 13–21.

    Google Scholar 

  26. Roth J (1987)Biochim Biophys Acta 906: 405–36.

    Google Scholar 

  27. Nilsson T, Hoe MH, Slusarewicz P, Rabouille C, Watson R, Hunte F, Watzele G, Berger EG, Warren G (1994)EMBO J 13: 562–74.

    Google Scholar 

  28. Young WW Jr, Lutz MS, Mills SE, Lechler-Osborn S (1990)Proc Natl Acad Sci USA 87: 6838–42.

    Google Scholar 

  29. Van Echten G, Sandhoff K (1993)J Biol Chem 268: 5341–44.

    Google Scholar 

  30. Palleros DR, Welch WJ, Fink AL (1991)Proc Natl Acad Sci USA 88: 5719–23.

    Google Scholar 

  31. Trinchera M, Ghidoni R (1989)J Biol Chem 264: 15766–69.

    Google Scholar 

  32. Trinchera M, Pirovano B, Ghidoni R (1990)J Biol Chem 265: 18242–47.

    Google Scholar 

  33. Wattenberg BW (1990)J Cell Biol 111: 421–28.

    Google Scholar 

  34. Young WW Jr, Lutz MS, Blackburn WA (1992)J Biol Chem 267: 12011–15.

    Google Scholar 

  35. Van Echten G, Iber H, Stotz H, Takatsuki A, Sandhoff K (1990)Eur J Cell Biol 51: 135–39.

    Google Scholar 

  36. Kleene R, Berger EG (1993)Biochim Biophys Acta Rev Biomembr 1154: 283–325.

    Google Scholar 

  37. Roth J, Taatjes DJ, Weinstein J, Paulson JC, Greenwell P, Watkins WM (1986)J Biol Chem 261: 14307–12.

    Google Scholar 

  38. Nilsson T, Pypaert M, Hoe MH, Slusarewicz P, Berger EG, Warren G (1993)J Cell Biol 120: 5–13.

    Google Scholar 

  39. Colley KJ, Lee EU, Paulson JC (1992)J Biol Chem 267: 7784–93.

    Google Scholar 

  40. Rabouille C, Hui N, Hunte F, Kieckbusch R, Berger EG, Warren G, Nilsson T (1995)J Cell Sci 108: 1617–27.

    Google Scholar 

  41. Schutze M-P, Peterson PA, Jackson MR (1994)EMBO J 13: 1696–705.

    Google Scholar 

  42. Jackson MR, Nilsson T, Peterson PA (1993)J Cell Biol 121: 317–33.

    Google Scholar 

  43. Mandon E, Kempner ES, Ishihara M, Hirschberg CB (1994)J Biol Chem 269: 11729–33.

    Google Scholar 

  44. Yamaguchi N, Fukuda MN (1995)J Biol Chem 270: 12170–76.

    Google Scholar 

  45. Claesson L, Larhammar D, Rask L, Peterson PA (1983)Proc Natl Acad Sci USA 80: 7395–99.

    Google Scholar 

  46. Strubin M, Long EO, Mach B (1986)Cell 47: 619–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to Professor Sen-itiroh Hakomori on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaskiewicz, E., Zhu, G., Taatjes, D.J. et al. Cloned β1,4N-acetylgalactosaminyltransferase: subcellular localization and formation of disulfide bonded species. Glycoconjugate J 13, 213–223 (1996). https://doi.org/10.1007/BF00731496

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731496

Keywords

Navigation