Skip to main content
Log in

Immunoblot analysis of sarcoplasmic calcium binding proteins in Duchenne muscular dystrophy

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

The Western blotting technique was used to detect parvalbumin and S-100 protein in muscles from 10 Duchenne muscular dystrophy (DD) patients, 13 patients with other muscle diseases and 5 age-matched healthy subjects. DD muscles were found to contain decreased amounts of parvalbumin and the S-100 protein. The parvalbumin level did not relate to the age of the patients and the stage of the disease. The S-100 protein decreased progressively with the age of the patients. In a very advanced DD case the S-100 protein was present in trace amounts. In other primary myopathies, including Becker dystrophy, and neurogenic muscular atrophy both parvalbumin and S-100 protein levels were similar to that observed in healthy subjects. The decrease in the amount of both calcium binding proteins may contribute to the elevation of free intracellular Ca2+ level in the sarcoplasm of dystrophic muscle and would result in abnormalities in processes regulated by these proteins. The mechanism(s) responsible for the decrease of parvalbumin and S-100 protein in DD muscles are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bertorini TE, Bhattacharya SK, Palmieri GM, Chesney CM, Pifer D, Baker B (1982) Muscle calcium and magnesium content in Duchenne muscular dystrophy. Neurology 32: 1088–1092

    PubMed  Google Scholar 

  2. Bertorini TE, Cornelio F, Bhattacharya SK, Palmieri GMA, Donas I, Dworzak F, Brambieri B (1984) Calcium and magnesium content in fetuses at risk and prenecrotic Duchenne muscular dystrophy. Neurology 34: 1436–1440

    PubMed  Google Scholar 

  3. Blum HE, Lehky P, Kohler L, SteinEA, Fischer EH (1977) Comparative properties of vertebrate parvalbumins. J Biol Chem 252: 2834–2838

    PubMed  Google Scholar 

  4. Bonilla E, Samitt CE, Miranda AF, Hays AP, Salviati G, Di Mauro S, Kunkel LM, Hoffman EP, Rowland LP (1988) Duchenne muscular dystrophy: deficiency of dystrophin at the cell surface. Cell 54: 447–452

    PubMed  Google Scholar 

  5. Celio MR, Heizmann CW (1982) Calcium-binding protein parvalbumin is associated with fast contracting muscle fibres. Nature 297: 504–506

    PubMed  Google Scholar 

  6. Cullen MJ, Fulthorpe JJ (1975) Stages in fibre breakdown in Duchenne muscular dystrophy. J Neurol Sci 24: 179–200

    PubMed  Google Scholar 

  7. Donato R (1986) S-100 proteins. Cell Calcium 7: 123–145

    PubMed  Google Scholar 

  8. Dubowitz V, Brooke MH (1973) Muscle biopsy: a modern approach. Saunders, London

    Google Scholar 

  9. Emery AEH, Burt D (1980) Intracellular calcium and pathogenesis and prenatal diagnosis of Duchenne muscular dystrophy. BMJ 1: 1355–1357

    Google Scholar 

  10. Endo E, Tanaka T, Isobe T, Kasai H, Okuyama T, Hidaka H (1981) Calcium dependent affinity chromatography of S-100 and calmodulin on calmodulin antagonist coupled Sepharose. J Biol Chem 256: 12485–12489

    PubMed  Google Scholar 

  11. Engel AG, Banker BQ (1986) Myology. Basic and clinical. Mc Graw-Hill, New York

    Google Scholar 

  12. Gailly PH, Hermans E, Octave JN, Gillis JM (1993) Specific increase of genetic expression of parvalbumin in fast skeletal muscles of mdx mice. FEBS Lett 326: 272–274

    PubMed  Google Scholar 

  13. Giometti CS, Bárány M, Danon MJ, Anderson NG (1980) Muscle protein analysis. II. Two-dimensional electrophoresis of normal and diseased human muscle. Clin Chem 28: 1152–1156

    Google Scholar 

  14. Green HJ, Klug GA, Reichmann H, Seedorf V, Wiehrer W, Pette D (1984) Exercise-induced fibre type transitions with regard to myosin, parvalbumin, and sarcoplasmic reticulum in muscles of the rat. Pflügers Arch 400: 432–438

    Google Scholar 

  15. Haiech J, Derancourt J, Pechere JF, Demaille JG (1979) Magnesium and calcium binding to parvalbumin: evidence for differences between parvalbumins and explanation of their relaxing factor. Biochemistry 18: 2752–2758

    PubMed  Google Scholar 

  16. Hoffman EP, Brown RH, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51: 919–928

    PubMed  Google Scholar 

  17. Jockusch H, Friedrich G, Zippel M (1990) Serum parvalbumin, an indicator of muscle disease in murine dystrophy and myotonia. Muscle Nerve 13: 551–555

    PubMed  Google Scholar 

  18. Klug G, Wiehrer W, Reichmann H, Leberer E, Pette D (1983) Relationship between early alternations in parvalbumins, sarcoplasmic reticulum and metabolic enzymes in chronically stimulated fast twitch muscle. Pflügers Arch 399: 280–284

    Google Scholar 

  19. Klug G, Reichman H, Pette D (1985) Decreased parvalbumin contents in skeletal muscles of C57BL/6J(dydJ/dy2J) dystrophic mice. Muscle Nerve 8: 576–579

    PubMed  Google Scholar 

  20. Laemmli UH (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  21. Leberer E, Pette D (1986) Neural regulation of parvalbumin expression in mammalian skeletal muscle. Biochem 1235: 67–73

    Google Scholar 

  22. Leberer E, Pette D (1986) Immunochemical quantification of sarcoplasmic reticulum Ca-ATP-ase, of calse-questrin and parvalbumin in rabbit skeletal muscles of defined fiber composition. Eur J Biochem 156: 489–496

    PubMed  Google Scholar 

  23. Leberer E, Seedorf V, Pette D (1986) Neural control of gene expression in skeletal muscle. Calcium-sequestring proteins in developing and chronically stimulated rabbit skeletal muscles. Biochem 1239: 295–300

    Google Scholar 

  24. Lowry OH, Rosebrough NJ, Farr AE, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275

    PubMed  Google Scholar 

  25. Maunder CA, Yarom R, Dubowitz V (1977) Electron microscope x-ray microanalysis of normal and diseased human muscle. J Neurol Sci 33: 323–334

    PubMed  Google Scholar 

  26. Maunder-Sewry CA, Dubowitz V (1979) Myonuclear calcium in carriers of Duchenne muscular dystrophy: an x-ray microanalysis study. J Neurol Sci 42:337–347

    PubMed  Google Scholar 

  27. Maunder-Sewry CA, Gorodetsky R, Yarom R, Dubowitz V (1980) Element analysis of skeletal muscle in Duchenne muscular dystrophy using xray fluorescence spectroscopy. Muscle Nerve 3: 502–508

    PubMed  Google Scholar 

  28. Mokri B, Engel AG (1975) Duchenne dystrophy: electron microscopic findings pointing to a basic or early abnormality in the plasma membrane of the muscle fiber. Neurology 25: 1111–1120

    PubMed  Google Scholar 

  29. Nicholson LVB, Davison K, Falkous G, Harwood C, O'Donnel E, Slater CR, Harris JB (1989) Dystrophin in skeletal muscle. Western blot analysis using a monoclonal antibody. J Neurol Sci 94: 125–136

    PubMed  Google Scholar 

  30. Niebój-Dobosz I (1981) Biochemical characteristics of progressive muscular dystrophy (in Polish). PhD Thesis, Medical Academy, Warsaw

    Google Scholar 

  31. Niebrój-Dobosz I, Kornguth S, Schutta HS, Siegel FL (1989) Elevated calmodulin levels and reduced calmodulin-stimulated calcium-ATPase in Duchenne progressive muscular dystrophy. Neurology 39: 1610–1614

    PubMed  Google Scholar 

  32. Niebrój-Dobosz I, Kornguth S, Schutta HS, Siegel FL, Hausmanowa-Petrusewicz I (1989) Proteins of muscle subcellular fractions in Duchenne's progressive muscular dystrophy stained with “Stains-all” cationic carbocyanine dye and with Coomassie Blue. Muscle Nerve 12: 273–280

    PubMed  Google Scholar 

  33. Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83: 346–356

    PubMed  Google Scholar 

  34. Potter JD, Dedman JR, Means AR (1977) Ca2+-dependent regulation of cyclic AMP phosphodiesterase by parvalbumin. J Biol Chem 252: 5609–5611

    PubMed  Google Scholar 

  35. Rowland LP (1980) Biochemistry of muscle membranes in Duchenne muscular dystrophy. Muscle Nerve 3: 3–20

    PubMed  Google Scholar 

  36. Sano M, Yokota T, EndoT, Tsukagoshi H (1990) A developmental change in the content of parvalbumin in normal and dystrophic mouse (mdx) muscle. J Neurol Sci 97: 261–272

    PubMed  Google Scholar 

  37. Sugita H, Katagiri T, Shimuzu T, Toyokura Y (1973) Studies on the structural proteins in various neuromuscular diseases. In: Kakulas BA (ed) Basic research in myology, part 1. Excerpta Medica, Amsterdam/American Elsevier, New York, pp 291–297

    Google Scholar 

  38. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedures and some applications. Proc Natl Acad Sci USA 76: 4350–4354

    PubMed  Google Scholar 

  39. Wnuk W, Cox JA, Stein EA (1982) Parvalbumins and other soluble high affinity calcium-binding proteins from muscle. In: Cheung WY (ed) Calcium and cell function. Academic Press, New York, pp 243–278

    Google Scholar 

  40. Wrogemann K, Jacobson BE, Blanchaer MC (1973) The mechanism of a calcium-associated defect of oxidative phosphorylation in progressive muscular dystrophy. Arch Biochem Biophys 159: 267–278

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niebrój-Dobosz, I., Łukasiuk, M. & Niebrój-Dobosz, I. Immunoblot analysis of sarcoplasmic calcium binding proteins in Duchenne muscular dystrophy. J Neurol 242, 82–86 (1995). https://doi.org/10.1007/BF00887821

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00887821

Key words

Navigation