Skip to main content
Log in

Influence of intermittent hypoxia and pyrimidinic nucleosides on cerebral enzymatic activities related to energy transduction

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The effect of intermittent normobaric hypoxia and of biological pyrimidines (uridine and cytidine) on the specific activities of some enzymes related to cerebral energy metabolism were studied. Measurement were carried out on the following: (a) homogenate in toto; (b) purified mitochondrial fraction; (c) crude synaptosomal fraction, in different areas of rat brain: cerebral cortex, hippocampus, corpus striatum, hypothalamus, cerebellum, and medulla oblongata. Intermittent normobaric hypoxia (12 hours daily for 5 days) caused modifications of the enzyme activities in the homogenate in toto (decrease of hexokinase in cerebellum; increase of pyruvate kinase in medulla oblongata), in the purified mitochondrial fraction (increase of succinate dehydrogenase in the corpus striatum) and in the crude synaptosomal fraction (decrease of cytochrome oxidase activity in cerebral cortex, hippocampus, and cerebellum; decrease of malate dehydrogenase in hippocampus and cerebellum; decrease of lactate dehydrogenase in cerebellum). Daily treatment with cytidine or uridine altered some enzyme activities either affected or unaffected by intermittent hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ackrell, B. A. C., Kearney, E. B., andSinger, T. P. 1978. Mammalian succinate dehydrogenase. Pages 466–483,in Fleischer, S., andPacker, L. (eds.), Methods in Enzymology, Vol. 53, Academic Press Inc., New York and London.

    Google Scholar 

  2. Alberghina, M., andGiuffrida, A. M. 1981. Effect of hypoxia on the incorporation of [2-3H]glycerol and [1-14C]palmitate into lipids of various brain regions. J. Neurosc. Res. 6:403–419.

    Google Scholar 

  3. Alberghina, M., Viola, M., andGiuffrida, A. M. 1981. Pool size of CDP-choline in the brain, heart and lung of normal and hypoxic guinea pigs. J. Neurosc. Res. 6:719–722.

    Google Scholar 

  4. Alberghina, M., Viola, M., andGiuffrida, A. M. 1982. Changes in enzyme activities of glycerolipid metabolism of guinea-pig cerebral hemispheres during experimental hypoxia. J. Neurosc. Res. 7:147–154.

    Google Scholar 

  5. Beaconsfield, P. 1963. Local metabolic response to physio-pathological demands: the pentose phosphate pathway. Experientia 19:437–438.

    Google Scholar 

  6. Benzi, G., Arrigoni, E., Marzatico, F., andVilla, R. F. 1979. Influence of some biological pyrimidines on the succinate cycle during and after cerebral ischemia. Biochem. Pharmacol. 28:2545–2550.

    Google Scholar 

  7. Benzi, G., Arrigoni, E., Pastoris, O., Raimondo, S., Fulle, D., Curti, D., andVilla, R. F. 1981. Metabolic changes induced by acute hypoxia on the synaptosomes from dog brain. Eur. Neurol. 20:235–244.

    Google Scholar 

  8. Bergmeyer, H. U., andBernt, E. 1974. Lactate dehydrogenase: UV-assay with pyruvate and NADH. Pages 574–579,in Bergmeyer, H. U. (ed.), Methods in Enzymatic Analysis, Academic Press Inc., New York and London.

    Google Scholar 

  9. Booth, R. F. G., Harvey, S. A. K., andClark, J. B. 1983. Effects of “in vivo” hypoxia on acetylcholine synthesis by rat brain synaptosomes. J. Neurochem. 40:106–110.

    Google Scholar 

  10. Bosley, T. M., Woodhams, P. L., Gordon, R. D., andBalazs, R. 1983. Effects of anoxia on the stimulated release of amino acid neurotransmitters in the cerebellum “in vitro”. J. Neurochem. 40:189–201.

    Google Scholar 

  11. Davis, J. N., andCarlsson, A. 1973. The effect of hypoxia on monoamine synthesis, levels and metabolism in brain. J. Neurochem. 21:783–790.

    Google Scholar 

  12. Dawson, D. M. 1968. Enzymatic conversion of uridine nucleotide to cytidine nucleotide by rat brain. J. Neurochem. 15:31–34.

    Google Scholar 

  13. Ellman, G. L., Courtney, K. D., Andres, V., andFeatherstone, R. M. 1961. A new and rapid colorimetric determination of acetycholinesterase activity. Biochem. Pharmacol. 7:88–95.

    Google Scholar 

  14. Geiger, A., andYamasaki, S. 1956. Cytidine and uridine requirement of the brain. J. Neurochem. 1:93–100.

    Google Scholar 

  15. Gibson, G. E., Jope, R., andBlass, J. P. 1975. Decreased synthesis of acetylcholine accompanying impaired oxidation of pyruvic acid in rat brain slices. Biochem. J. 148:17–23.

    Google Scholar 

  16. Gibson, G. E., Shimada, M., andBlass, J. P. 1978. Alterations in acetylcholine synthesis and cyclic nucleotides in mild cerebral hypoxia. J. Neurochem. 31:757–760.

    Google Scholar 

  17. Gibson, G. E., Peterson, C., andSansone, J. 1981. Decreases in aminoacid and acetycholine metabolis during hypoxia. J. Neurochem. 37:192–201.

    Google Scholar 

  18. Glowinski, J., andIversen, L. L. 1966. Regional studies of catecholamines in the rat brain. I. J. Neurochem. 13:655–669.

    Google Scholar 

  19. Guarneri, P., Guarneri, R., Mocciaro, C., andPiccoli, F. 1982. Effect of uridine on GABA receptors. Page 400,in Giuffrida Stella, A. M., Gombos, G., Benzi, G., andBachelard, H. S. (eds.) Basic and clinical aspects of molecular neurobiology, Int. Menarini Found., Milano.

    Google Scholar 

  20. Hamberger, A., andHyden, H. 1963. Inverse enzyme changes in neurons and glia during increased function and hypoxia. J. Cell. Biol. 16:521–525.

    Google Scholar 

  21. Harvey, S. A. K., Booth, R. F. G., andClark, J. B. 1982. The effect “in vitro” of hypoglycaemia and recovery from anoxia on synaptosomal metabolism. Biochem. J. 206:433–439.

    Google Scholar 

  22. Johnson, M. K. 1960. The intracellular distribution of glycolytic and other enzymes in rat brain homogenates and mitochondrial preparations. Biochem. J. 77:610–618.

    Google Scholar 

  23. Knull, H. R., Taylor, W. F., andWells, W. W. 1973. Effects of energy metabolism “in vivo” distribution of hexokinase in brain. J. Biol. Chem. 248:5414–5417.

    Google Scholar 

  24. Ksiezak, H. J., andGibson, G. E. 1981. Oxygen dependence of glucose and acetylcholine metabolism in slices and synaptosomes from rat brain. J. Neurochem. 37:305–314.

    Google Scholar 

  25. Lowry, O. H., Rosebrough, N. J. Farr A. L., andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  26. Meijer, A. J., andVan Dam, K. 1974. The metabolic significance of anion transport in mitochondria. Biochim. Biophys. Acta 346:213–244.

    Google Scholar 

  27. Nason, A., andVasington, F. D. 1963. Lipid dependent DPNH-cytochrome c from mammalian skeletal and heart muscle. Pages 409–415,in Colowick, S. P., andKaplan, N. O. (eds.), Methods in Enzymology, Vol. 6, Academic Press Inc., New York.

    Google Scholar 

  28. Ochoa, S. 1955. Malic dehydrogenase from pig heart. Pages 735–739,in Colowick, S. P. andKaplan, N. O. (eds.), Methods in Ezymology, Vol. 1, Academic Press Inc., New York and London.

    Google Scholar 

  29. Palmer, J. M., andColeman, J. O. D. 1974. Multiple pathways of NADH oxidation in the mitochondrion. Pages 220–260,in Quagliariello, E., Palmieri, F., and Singer, T. P. (eds.), Horizons in Biochemistry and Biophysics, Vol. 1, Addison-Wesley Publishing Co., London, Amsterdam, Sydney, Tokyo.

    Google Scholar 

  30. Pastoris, O., Marzatico, F., Dagani, F., Curti, D., andBenzi, G. 1980. Dose/action and time/action relationships of some biological molecules evaluated on the cerebral enzymatic activities. Il Farmaco Ed. Sc. 35:126–137.

    Google Scholar 

  31. Pastusko, A., Wilson, D., Erecinska, M. andSilver, I. 1981. Effects of “in vitro” hypoxia and lowered pH on potassium fluxes and energy metabolism in rat brain synaptosomes. J. Neurochem. 36:116–123.

    Google Scholar 

  32. Rafalowska, U., Erecinska, M., andWilson, D. 1980. The effect of acute hypoxia on synaptosomes from rat brain. J. Neurochem. 34:1160–1165.

    Google Scholar 

  33. Roberts, C. A. 1973. Anticonvulsant effects of uridine: comparative analysis of metrazol and penicillin induced foci. Brain Res. 55:291–308.

    Google Scholar 

  34. Rossowska, M. 1982. Effect of hypoxia on the superficially exposed carbohydrates of subcellular fractions of guinea-pig cerebral cortex. J. Neurosc. Res. 7:81–88.

    Google Scholar 

  35. Serra, I., Alberghina, M., Viola, M., Mistretta, A., andGiuffrida, A. M. 1981. Effect of CDP-choline on the biosynthesis of nucleic acids and proteins in brain regions during hypoxia. Neurochem. Res. 6:607–618.

    Google Scholar 

  36. Shertzer, H. G., andCascarano, J. 1972. Mitochondrial alterations in heart, liver and kidney of altitude-acclimated rats. Am. J. Physiol. 223:632–636.

    Google Scholar 

  37. Siesjö, B. K. 1978. Hypoxia. Pages 398–452,in Wiley, J. & sons (eds.), Brain metabolism, Wiley Interscience, Chichester, New York, Brisbane and Toronto.

    Google Scholar 

  38. Singer, T. P., andGutman, M. 1974. The quest for coupling site. I. Pages 261–302,in Quagliariello, E., Palmieri, F., andSinger, T. P. (eds.), Horizons in Biochemistry and Biophysics, Vol. 1, Addison-Wesley Publishing Co., London, Amsterdam, Sidney, Tokyo.

    Google Scholar 

  39. Smialek, M., Hamberger, A. 1970. The effect of hypoxia and ischemia on cytochrome oxidase activity and protein synthesis in brain mitochondria. Brain Res. 17:369–371.

    Google Scholar 

  40. Smith, L. 1955. Spectrophotometric assay of cytochrome c oxidase. Pages 427–434,in Glick, D. G. (ed.), Methods of Biochemical Analysis, Vol. 2, Wiley Interscience, New York.

    Google Scholar 

  41. Sottocasa, G. L., Kuylenstierna, B., Ernster, L., andBergstrand, A. 1967. An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J. Cell. Biol. 32:415–438.

    Google Scholar 

  42. Sugden, P. H., andNewsholme, E. A. 1975. The effects of ammonium inorganic phosphate and potassium ions on the activity of phosphofructokinase from muscle and nervous tissue of vertebrates and invertebrates. Biochem. J. 150:122–133.

    Google Scholar 

  43. Sugden, P. H., andNewsholme, E. A. 1975. Activities of citrate synthase, NAD+-linked and NAP+-linked isocitrate dehydrogenase, glutamate dehydrogenase, asparate aminotransferase and alanine aminotransferase in nervous tissue from vertebrates and invertebrates. Biochem. J. 150:105–111.

    Google Scholar 

  44. Tappan, D. V., Reynafarje, B., Potter, V. R., andHurtado, A. 1957. Alteration in enzyme and metabolite resulting from adaptation to low oxygen tension. Am. J. Phyiol. 190:93–98.

    Google Scholar 

  45. Villa, R. F. 1981. Brain enzymes and ischemia. Eur. Neurol. 20:245–252.

    Google Scholar 

  46. Yamada, W. 1961. The phosphorolysis of nucleotides by rabbit bone marrow. J. Biol. Chem. 326:3043–3046.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dagani, F., Marzatico, F., Curti, D. et al. Influence of intermittent hypoxia and pyrimidinic nucleosides on cerebral enzymatic activities related to energy transduction. Neurochem Res 9, 1085–1099 (1984). https://doi.org/10.1007/BF00964804

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964804

Keywords

Navigation