Skip to main content
Log in

Immunocytochemical localization of GABAergic neurones at the electron microscopical level

  • Reviews and Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

Antibodies prepared to purified brain glutamic acid decarboxylase (GAD), the synthesizing enzyme for the neurotrasmitter, γ-aminobutyric, acid (GABA), have been utilized with an unlabelled antibody method to localize GABAergic neurones in both light and electron microscopic preparations. A modification of Sternberger's peroxidase-antiperoxidase (PAP) complex is used to localize the site of anti-GAD binding, and the PAP complex is visualized with diaminobenzidine and H2O2. The reaction product is visible in both the light and electron microscopes. The ability to localize and identify labelled profiles in the electron microscope provides more functional information than light microscopical preparations. For example, the GAD-positive reaction product occurs mostly in association with synaptic vesicles within axon terminats, and this localization indicates the importance of GAD for the packaging and storage of GABA. The somata and dendrites of neurones giving rise to these terminals are visualized in colchicine-injected material. The GABAergic neurones form axo-somatic, axo-dendritic, axo-axonal and dendro-dendritic synapses in various regions of the rat central nervous system. Pretreatments of animals with anterograde degeneration have shown the significance of some of the GABAergic terminals that form axo-axonal synapses in the spinal cord.

An many brain regions, such as the cerebral cortex, hippocampus and olfactory bulb, virtually all of the GABAergic synapses are derived from local circuit neurones. In other regions such as the cerebellum and neostriatum, the GABAergic terminals are derived from both local circuit neurones and the local axon collaterals of projection neurones that have their somata within these regions. A third type of configuration of GABAergic terminals occurs in the globus pallidus and substantia nigra where these terminals are derived from distant brain regions, axon collaterals of projection neurones and from local circuit neurones. Together, these results indicate the complex organization of the GABAergic system of the brain that has been vividly revealed with electron in croscopical immunocytochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barber, R. &Saito, K. (1976) Light microscopic visualization of GAD and GABA-T in immunocytochemical preparations of rodent CNS. InGABA in Nervous System Function (Edited byRoberts, E., Chase, T. N. andTower, D. B.), pp. 113–132. New York: Raven Press.

    Google Scholar 

  • Barber, R., Vaughn, J. E., Saito, K., McLaughlin, B. J. &Roberts, E. (1978) GABAergic terminals are presynaptic to primary afferent terminals in the substantia gelatinosa of the rat spinal cord.Brain Res. 141, 35–55.

    Google Scholar 

  • Blackstad, T. W. &Flood, P. R. (1963) Ultrastructure of hippocampal axosomatic synapsesNature, Lond. 198, 542–3.

    Google Scholar 

  • Cajal, S. R. Y (1911)Histologie du Systéme Nerveux de l'Homme et des Vertébrés. Tome II. Paris: Maloine.

    Google Scholar 

  • Fahn, S. (1976) Regional distribution studies of GABA and other putative neurotransmitters and their enzymes. InGABA in Nervous System Function (edited byRoberts, E., Chase, T. N. andTower, D. B.), pp. 169–86. New York: Raven Press.

    Google Scholar 

  • Fairén, A., Peters, A. &Saldanha, J. (1977) A new procedure for examining Golgi-impregnated neurons by light and electron microscopy.J. Neurocytol. 6, 311–37.

    Google Scholar 

  • Fonnum, F. &Walberg, F. (1973) An estimation of concentration of γ-amino butyric acid and glutamate decarboxylase in the inhibitory Purkinje axon terminals in the cat.Brain Res. 54, 115–27.

    Google Scholar 

  • Hassler, R. (1979) Electronmicroscopic differentiation of the extrinsic and intrinsic types of nerve cells and synapses in the striatum and their putative transmitters. InAdvances in Neurology, Vol. 24 (edited byPoirier, L. J., Sourkes, T. L. andBédard, P. J.), pp. 93–108. New York: Raven Press.

    Google Scholar 

  • Hattori, T., Fibiger, H. C. &McGeer, P. L. (1975) Demonstration of a pallidonigral projection innervating dopaminergic neurons.J. comp. Neurol. 162, 487–504.

    Google Scholar 

  • Hökfelt, T., Elde, R., Johansson, O., Luft, R., Nilsson, G. &Arimura, A. (1976) Immunohistochemical evidence for separate populations of somatostatin-containing and substance P-containing primary afferent neurons in the rat.Neurosci. 1, 131–6.

    Google Scholar 

  • Hökfelt, T., Elde, R., Johansson, O., Terenius, L. &Stein, L. (1977) The distribution of enkephalin-immunoreactive cell bodies in the rat central nervous system.Neurosci. Lett. 5, 25–31.

    Google Scholar 

  • Hökfelt, T., Kellerth, J.-O., Nilsson, G. &Pernov, B. (1975) Experimental immunohistochemical studies on the localization and distribution of substance P in cat primary sensory neurons.Brain Res. 100, 235–52.

    Google Scholar 

  • Hökfelt, T., Ljungdahl, A., Steinbusch, H., Verhofstad, A., Nilsson, G., Brodin, E., Pernov, B. &Goldstein, M. (1978) Immunohistochemical evidence of substance P-like immunoreactivity in some 5-hydroxytryptamine-containing neurons in the rat central nervous system.Neurosci. 3, 517–38.

    Google Scholar 

  • Ito, M. (1976) Roles of GABA neurons in integrated fnctions of the vertebrate CNS. InGABA in Neurons System Function (edited byRoberts, E., Chase, T. N. andTower, D. B.), pp. 427–448. New York: Raven Press.

    Google Scholar 

  • Kital, S. T., Preston, R. J., Bishop, G. A. &Kocsis, J. D. (1979) Striatal projection neurons: morphological and electrophysiological studies. InAdvances in Neurology, Vol. 24 (edited byPoirier, L. J., Sourkes, T. L. andBédard, P. J.), pp. 45–51. New York: Raven Press.

    Google Scholar 

  • Ruriyama, K., Haber, B., Sisken, &Roberts, E. (1966) The γ-aminobutyric acid system in rabbit cerebellum.Proc. natn. Acad. Sci. U.S.A. 55, 846–52.

    Google Scholar 

  • Lorente de Nó, R. (1934) Studies on the structure of the cerebral cortex. II. Continuation of the study of the Ammonic system.J. Psychol. Neurol., Leipzig 46, 113–77.

    Google Scholar 

  • Marin-Padilla, M. (1969) Orlgin of the pericellular baskets of the human motor cortex: A Golgi study.Brain Res. 14, 633–46.

    Google Scholar 

  • McGeer, P. L., Eccles, J. C. &McGeer, E. G. (1978)Molecular Neurobiology of the Brain. New York: Plenum Press.

    Google Scholar 

  • McLaughlin, B. J., Wood, J. G., Saito, K., Barber, R., Vaughn, J. E., Roberts, E. &Wu, J.-U. (1974) The fine structural localization of glutamate decarboxylase in synaptic terminals of rodent cerebellum.Brain Res. 76, 377–91.

    Google Scholar 

  • McLaughlin, B. J., Barber, R., Saito, K., Roberts, E. &Wu, J.-Y. (1975) Immunocytochemical localization of glutamate decarboxylase in rat spinal cord.J. comp. Neurol. 164, 305–22.

    Google Scholar 

  • Millcnig, G. (1961) Advantage of a phosphate buffer for OsO4 solutions in fixation.J. appl. Physiol. 32, 1637.

    Google Scholar 

  • Falay, S. L. &Palade, G. E. (1955) The fine structure of neurones.J. Biophys. Biochem. Cytol. 1, 69–88.

    Google Scholar 

  • Peiers, A. &Fairén, A. (1978) Smooth and sparsely-spined stellate cells in the visual cortex of the rat: a study using a combined Golgi-electron microscopic technique.J. comp. Neurol. 181, 129–72.

    Google Scholar 

  • Pickeu, V. M., Joh, T. H. &Reis, D. J. (1976) Monoamine-synthesizing enzymes in central dopaminergic, noradrenergic and serotonergic neurons. Immunocytochemical localization by light and electron microscopy.J. Histochem. Cytochem. 24, 792–806.

    Google Scholar 

  • Ralston, H. J. III (1971) The synaptic organization in the dorsal horn of the spinal cord and in the ventrobasal thalamus in the cat. InOral-Facial Sensory and Motor Mechanisms (edited byDubner, R. andKawaura, Y.), pp. 299–350. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Ribak, C. E. (1978) Aspinous and sparsely-spinous stellate neurons in the visual cortex of rats contain glutamic acid decarboxylase.J. Neurocytol. 7, 461–78.

    Google Scholar 

  • Ribak, C. E., Harris, A. B., Vaughn, J. E. &Roberts, E. (1979a) Inhibitory, GABAergic nerve terminals decrease at sites of focal epilepsy.Science 205, 211–40.

    Google Scholar 

  • Ribak, C. E., Vaughn, J. E. &Roberts, E. (1979b) The GABA neurons and their axon terminals in rat corpus striatum as demonstrated by GAD immunocytochemistry.J. comp. Neurol. 187 261–84.

    Google Scholar 

  • Ribak, C. E., Vaughn, J. E. &Roberts, E. (1980) GABAergic nerve terminals decrease in the substantia nigra following hemitransections of the striatonigral and pallidonigral pathways.Btain Res. 192 413–20.

    Google Scholar 

  • Ribak, C. E., Vaughn, J. E. &Saito, K. (1978) Immunocytochemical localization of glutamic acid decarboxylase in neuronal somata following colchicine inhibition of axonal transport.Brain Res. 140, 315–32.

    Google Scholar 

  • Ribak, C. E., Vaughn, J. E., Saito, K., Barber, R. &Roberts, E. (1976) Immunocytochemical localization of glutamate decarboxylase in rat substantia nigra.Brain Res. 116, 287–98.

    Google Scholar 

  • Ribak, C. E., Vaughn, J. E., Saito, K., Barber, R., &Roberts, E. (1977) Glutamate decarboxylase localization in neurons of the olfactory bulb.Brain Res. 126, 1–18.

    Google Scholar 

  • Roberts, E. (1980) Epilepsy and antiepileptic drugs: A speculative synthesis. InAntiepileptic Drugs: Mechanism of Action (edited byGlaser, G. H., Penry, J. K. andWoodbury, D. M.), pp. 667–713. New York: Raven Press.

    Google Scholar 

  • Shepherd, G. M. (1972) Synaptic organization of the mammalian olfactory bulb.Physiol. Rev. 52, 864–917.

    Google Scholar 

  • Slemmon, J. R., Salvaterra, P. M., &Saito, K. (1980) Preparation and characterization of peroxidase: antiperoxidase-Fab complex.J. Histochem. Cytochem. 28, 10–5.

    Google Scholar 

  • Swanson, L. W. &Hartman, B. K. (1975) The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-B-hydroxylase as a marker.J. comp. Neurol. 163, 467–506.

    Google Scholar 

  • Vaughn, J. E., Barber, R. P., Ribak, C. E. &Houser, C. R. (1981) Methods for the immunocytochemical localization of proteins and peptides involved in neurotransmission. InCurrent Trends in Morphological Techniques (edited byJ. Johnson). New York: CRC (in press).

    Google Scholar 

  • Wood, J. G., McLaughlin, B. J. &Vaughn, J. E. (1976) Immunocytochemical localization of GAD in electron microscopic preparations of rodent CNS. InGABA in Nervots System Function (edited byRoberts, E., Chase, T. N. andTower, D. B.), pp. 133–148. New York: Raven Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribak, C.E., Vaughn, J.E. & Barber, R.P. Immunocytochemical localization of GABAergic neurones at the electron microscopical level. Histochem J 13, 555–582 (1981). https://doi.org/10.1007/BF01002711

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01002711

Keywords

Navigation