Skip to main content
Log in

Immunocytochemical mapping of noradrenergic projections to the rat spinal cord with an antiserum against noradrenaline

  • Published:
Journal of Neurocytology

Summary

The mapping of noradrenergic innervation was performed in transverse and longitudinal sections of the adult rat spinal cord using noradrenaline immunocytochemistry. Noradrenergic fibres and terminals were distributed in the dorsal horn (mainly in the superficial part), in the vicinity of the different groups of motoneurons, and concentrated in the intermediolateral cell column and around the central canal. The ultrastructural study showed principally axodendritic synapses in the ventral horn and in the intermediolateral cell column. Fewer axosomatic synapses were detected. In the dorsal horn, noradrenalineinnervation was predominantly non-synaptic. It is hypothesized that the noradrenergic modulation of nociception is not mediated through classical synapses. The concept of ‘volume transmission’ can explain such an influence. Conversely, noradrenaline may be involved in the control of locomotion and automatic functions through conventional synapses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alonso, G. &Gaillet, S. (1991) Differences in the immunoreactivity to phenylethanolamine-N-methyl-transferase in the central adrenergic neurons of four strains of rats.Cell and Tissue Research 265, 307–15.

    Google Scholar 

  • Archer, T., Minor, B. G. &Post, C. (1985) Blockade and reversal of 5-methoxy-N, N-dimethyltryptamine-induced analgesia following noradrenaline depletion.Brain Research 333, 55–61.

    Google Scholar 

  • Barrington, F. J. F. (1914) The nervous mechanism of micturition.Quarterly Journal of Experimental Physiology 8, 33–71.

    Google Scholar 

  • Basbaum, A. I. &Fields, H. L. (1979) The origin of descending pathways in the dorsolateral funiculus of the spinal cord of the cat and the rat: further studies on the anatomy of pain modulation.Journal of Comparative Neurology 187, 513–32.

    Google Scholar 

  • Beaudet, A. &Sotelo, C. (1981) Synaptic remodeling of serotonin axon terminals in rat agranular cerebellum.Brain Research 206, 305–29.

    Google Scholar 

  • Berge, O. G. &ögren, S. O. (1987) Limited involvement of central noradrenergic pathways in morphine-induced antinociception.Neuropharmacology 23, 1179–85.

    Google Scholar 

  • Bjelke, B., Agnati, L. F. &Fuxe, K. (1991) Experimental evidence for volume transmission by analysis of hostgraft interaction using intrastriatal adenohypophyseal transplants in the rat in combination with threedimensional reconstruction. InVolume Transmission in the Brain: Novel Mechanisms for Neural Transmission (edited byFuxe, K. &Agnati, L. F.) 1, pp. 463–78. New York: Raven Press, Ltd.

    Google Scholar 

  • Blessing, W. W. &Chalmers, J. P. (1979) Direct projection of catecholamine (presumably dopamine)-containing neurons from hypothalamus to spinal cord.Neuroscience Letters 11, 35–40.

    Google Scholar 

  • Bowker, R. M., Steinbusch, H. W. M. &Coulter, J. D. (1981) Serotonergic and peptidergic projections to the spinal cord demonstrated by a combined retrograde HRP histochemical and immunocytochemical staining method.Brain Research 211, 412–17.

    Google Scholar 

  • Buchanan, J. T. &Nornes, H. O. (1986) Transplants of embryonic brainstem containing the locus coeruleus into spinal cord enhance the hindlimb flexion reflex in adult rats.Brain Research 381, 225–36.

    Google Scholar 

  • Calvillo, O. &Ghignone, M. (1986) Presynaptic effect of Clonidine on unmyelinated afferent fibers in the spinal cord of the cat.Neuroscience Letters 64, 335–9.

    Google Scholar 

  • Chiba, T. &Masuko, S. (1986) Direct synaptic contacts of catecholamine axons on the preganglionic sympathetic neurons in the rat thoracic spinal cord.Brain Research 380, 405–8.

    Google Scholar 

  • Cimarusti, D. L., Saito, K., Vaughn, J. E., Barber, R., Robert, E. &Thomas, P. E. (1979) Immunocytochemical localization of dopamine-β-hydroxylase in ratlocus coeruleus and hypothalamus.Brain Research 162, 55–67.

    Google Scholar 

  • Clark, P. M., Yeomans, D. C. &Proudfit, H. K. (1991) The noradrenergic innervation of the spinal cord: differences between two substrains of Sprague-Dawley rats determined using retrograde tracers combined with immunocytochemistry.Neuroscience Letters 125, 155–8.

    Google Scholar 

  • Coote, J. H., Mcleod, V. H., Fleetwood-Walker, S. &Gilbey, M. P. (1981) The response of individual sympathetic preganglionic neurons to microelectrophoretically applied endogenous monoamines.Brain Research 215, 135–145.

    Google Scholar 

  • Coulter, J., Bowker, R., Wise, S., Murray, E., Cas-Tiglioni, A. &Westlund, K. (1979) Cortical, tectal and medullary descending pathways to the cervical spinal cord.Progress in Brain Research 50, 263–79.

    Google Scholar 

  • Dlström, A. &Fuxe, K. (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons.Acta Physiologica Scandinavica 64, Suppl 232, 1–55.

    Google Scholar 

  • Dahlström, A. &Fuxe, K. (1965) Evidence for the existence of monoamine-containing neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems.Acta Physiologica Scandinavica 64, Suppl 247, 1–36.

    Google Scholar 

  • Descarries, L., Watkins, K. C. &Lapierre, Y. (1977) Noradrenergic axon terminals in the cerebral cortex of rat. III. Topometric ultrastructural analysis.Brain Research 133, 197–222.

    Google Scholar 

  • Dittmar, C. (1873) Ueber die Lage des sogenannten Gefässcentrums in der Medulla oblongata. InBer, Verhandlungen der Sächsischen Gesellschaft der Wissenschaften, Mathematik und Physik, Leipzig,CL 25, pp. 449–69.

    Google Scholar 

  • Engberg, I. &Marshall, K. C. (1971) Mechanism of noradrenaline hyperpolarization in spinal cord motoneurons in the cat.Acta Physiologica Scandinavica 83, 142–4.

    Google Scholar 

  • Engberg, I. &Thaller, A. (1970) Hyperpolarizing actions of noradrenaline inspinal motoneurons.Acta Physiologica Scandinavica 80, 34–5A.

    Google Scholar 

  • Falck, B., Hillarp, N. A., Thieme, G. &Torp, A. (1962) Fluorescence of catecholamines and related compounds with formaldehyde.Journal of Histochemistry and Cytochemistry 10, 348–54.

    Google Scholar 

  • Fritschy, J. M. &Grzanna, R. (1990) Demonstration of two separate descending noradrenergic pathways to the rat spinal cord: evidence for an intragriseal trajectory of Locus coeruleus axons in the superficial layers of the dorsal horn.Journal of Comparative Neurology 291, 553–82.

    Google Scholar 

  • Fritschy, J. M., Lyons, W. E., Müllen, C. A., Kosofsky, B. E., Molliver, M. E. &Grzanna, R. (1987) Distribution of locus coeruleus axons in the rat spinal cord: a combined anterograde transport and immunohistochemical study.Brain Research 437, 176–80.

    Google Scholar 

  • Fuxe, K. &Agnati, L. F. (1991) Two principal modes of electrochemical communication in the brain: volume versus wiring transmission. InVolume Transmission in the Brain: Novel Mechanisms for Neural Transmission (edited byFuxe, K. &Agnati, L. F.) 1, pp. 1–9. New York: Raven Press, Ltd.

    Google Scholar 

  • Geffard, M., Henrick-Rock, A. M., Dulluc, J. &Seguela, P. (1985) Antisera against small neurotransmitter like molecules.Neurochemistry International 7, 403–13.

    Google Scholar 

  • Guyenet, P. G. &Cabot, J. B. (1981) Inhibition of sympathetic preganglionic neurons by catecholamine and clonidine mediation by an alpha-adrenergic receptor.Journal of Neurosdence 1, 908–17.

    Google Scholar 

  • Hagihira, S., Senba, E., Yoshida, S., Tohyama, M. &Yoshida, I. (1990) Fine structure of noradrenergic terminals and their synapses in the rat spinal dorsal horn: an immunohistochemical study.Brain Research 526, 73–80.

    Google Scholar 

  • Hancock, M. B. &Fougerousse, C. L. (1976) Spinal projections from nucleus locus coeruleus and nucleus subcoeruleus in the cat and monkey as demonstrated by the retrograde transport of horseradish Peroxidase.Brain Research Bulletin 1, 229–34.

    Google Scholar 

  • Hare, B. D., Neumoyr, R. J. &Franz, D. N. (1972) Opposite effect of L-DOPA and 5-HT on spinal sympathetic reflexes.Nature 239, 336–7.

    Google Scholar 

  • Hartman, B. K. (1973) Immunofluorescence of dopamineβ-hydroxylase application of improved methodology to the localization of the peripheral and central noradrenergic nervous system.Journal of Histochemistry and Cytochemistry 21, 312–32.

    Google Scholar 

  • Headley, P. M., Duggan, A. W. &Griersmith, B. Y. (1978) Selective reduction by noradrenaline of 5-hydroxytryptamine of nociceptive responses of cat dorsal horn neurons.Brain Research 145, 185–9.

    Google Scholar 

  • Hökfelt, T., Fuxe, K., Goldstein, M. &Johansson, O. (1974) Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain.Brain Research 66, 235–51.

    Google Scholar 

  • Jones, S. L. &Gebhart, G. F. (1986) Characterization of coeruleospinal inhibition of the nociceptive tail-flick reflex in the rat: mediation by spinal α2-adrenoceptors.Brain Research 364, 315–30.

    Google Scholar 

  • Kadzielawa, K. (1983) Inhibition of activity of sympathetic preganglionic neurons and neurons activated by visceral afferents by alpha-methyl-noradrenaline and endogenous catecholamines.Neuropharmacology 22, 3–17.

    Google Scholar 

  • Kojima, M., Matsura, T., Tanaka, A., Amagai, T., Imanishi, J. &Sano, Y. (1985) Characteristic distribution of noradrenergic terminals on the anterior horn motoneurons innervating the perineal striated muscles in the rat.Anatomy and Embryology 171, 267–73.

    Google Scholar 

  • Kuraishi, Y., Hirota, N., Sato, Y., Kaneko, S., Satoh, M. &Takagi, H. (1985) Noradrenergic inhibition of the release of substance P from the primary afferents in the rabbit spinal dorsal horn.Brain Reserarch 359, 177–82.

    Google Scholar 

  • Kuru, M. (1965) Nervous control of micturition.Physiological Reviews 45, 425–94.

    Google Scholar 

  • Kuypers, H. G. J. M. &Maisky, V. A. (1975) Retrograde axonal transport of horseradish peroxidase from spinal cord to brainstem cell groups in the cat.Neuroscience Letters 1, 9–14.

    Google Scholar 

  • Lai, Y. Y., Strahlendorf, H. K., Fung, S. J. &Barnes, C. D. (1989) The actions of two monoamines on spinal motoneurons from stimulation of the locus coeruleus in the cat.Brain Research 484, 268–72.

    Google Scholar 

  • Langer, S. Z. (1977) Presynaptic receptors and their role in the regulation of transmitter release.British Journal of Pharmacology 60, 481–97.

    Google Scholar 

  • Loewy, A. D., Mckellar, S. &Saper, C. B. (1979) Direct projections from the A5 catecholamine cell group to the intermediolateral cell column.Brain Research 174, 309–14.

    Google Scholar 

  • Ma, R. C. &Dun, N. J. (1985) Norepinephrine depolarizes lateral horn cells of neonatal rat spinal cord in vitro.Neuroscience Letters 60, 153–68.

    Google Scholar 

  • Marlier, L., Sandillon, F., Foulat, P., Rajaofetra, N., Geffard, M. &Privat, A. (1991) Serotonergic innervation of the dorsal horn of the rat spinal cord: a light and electron microscopic immunocytochemical study.Journal of Neurocytology 20, 310–22.

    Google Scholar 

  • Maxwell, D. J., Leranth, C. &Verhofstad, A. A. J. (1983) Fine structure of serotonin-containing axons in the marginal zone of the rat spinal cord.Brain Research 266, 253–9.

    Google Scholar 

  • Mccall, R. B. &Aghajanian, G. K. (1979) Serotonergic facilitation of facial motoneuron excitation.Brain Research 169, 11–27.

    Google Scholar 

  • Mclachlan, E. M. &Oldfield, B. J. (1981) Some observations on catecholaminergic innervation of the intermediate zone of the thoracolumbar spinal cord of the cat.Journal of Comparative Neurology 200, 529–44.

    Google Scholar 

  • Minor, B. G., Post, C. &Archer, T. (1985) Blockade of intrathecal 5-hydroxytryptamine-induced antinociception in rats by noradrenaline depletion.Neuroscience Letters 54, 39–44.

    Google Scholar 

  • Mizukawa, F. (1980) The segmental detailed topographical distribution of monoaminergic terminals and their pathways in the spinal cord of the cat.Anatomischer Anzeiger 147, 125–44.

    Google Scholar 

  • Molander, C., Xu, Q. &Grant, G. (1984) The cytoarchitectonic organization of the spinal cord in the rat. I. The lower thoracic and lumbosacral cord.Journal of Comparative Neurology 230, 133–41.

    Google Scholar 

  • Molander, C., Xu, Q., Rivero-Melian, C. &Grant, C. (1989) Cytoarchitectonic organization of the spinal cord in the rat. II. The cervical and upper thoracic cord.Journal of Comparative Neurology 289, 375–85.

    Google Scholar 

  • Nance, P. W. &Sawynok, J. (1987) Substance P-induced long-term blockade of spinal adrenergic analgesia: reversal by Morphine and Naloxone.Journal of Pharmacological and Experimental Therapeutics 240, 972–7.

    Google Scholar 

  • Nygren, L. G. &Olson, L. (1977) A new major projection from locus coeruleus the main source of noradrenergic nerve terminals in the ventral and dorsal columns of the spinal cord.Brain Research 132, 85–93.

    Google Scholar 

  • Olschowka, J. A., Molliver, M. E., Grzanna, R., Rice, F. L. &Coyle, J. T. (1981) Ultrastructural demonstration of noradrenergic synapses in the rat central nervous system by dopamine-β-hydroxylase irnmunocytochemistry.Journal of Histochemistry and Cytochemistry 29, 271–80.

    Google Scholar 

  • Ossipov, M. H., Chaterjee, T. K. &Gebhart, G. F. (1985)Locus coeruleus lesions in the rat enhance the antinociceptive potency of centrally administered Clonidine but not Morphine.Brain Research 341, 320–30.

    Google Scholar 

  • Pang, I. H. &Vasko, M. R. (1986) Effect of depletion of spinal cord norepinephrine on morphine-induced antinociception.Neuropharmacology 23, 1179–85.

    Google Scholar 

  • Parnavelas, J. G. &Papadopoulos, G. C. (1989) The monoaminergic innervation of the cerebral cortex is not diffuse and nonspecific.Trends in Neurosciences 12, 315–19.

    Google Scholar 

  • Post, C., Minor, B. G., Davies, M. &Archer, T. (1986) Analgesia induced by 5-hydroxytryptamine receptor agonists is blocked or reversed by noradrenalinedepletion in rats.Brain Research 363, 18–27.

    Google Scholar 

  • Privat, A., Mansour, H. &Geffard, M., (1988) Transplantation of fetal serotonin neurons into the transected spinal cord of adult rats: morphological development and functional influence.Progress in Brain Research 78, 155–66.

    Google Scholar 

  • Rajaofetra, N., Poulat, P., Marlier, L., Passagia, J. G., Verschuere, B., Sandillon, F. &Privat, A. (1989a) Localization of serotonin and peptides immunoreactivity in Onuf's nucleus of transected spinal cord in baboons.Abstracts of the 18th European Neuroscience Society, 73.8.

  • Rajaofetra, N., Sandillon, F., Geffard, M. &Privat, A. (1989b) Pre- and post-natal ontogeny of serotonergic projections to the rat spinal cord.Journal of Neuroscience Research 22, 305–21.

    Google Scholar 

  • Reddy, S. V. R., Maderdrut, J. L. &Yaksh, T. L. (1980) Spinal cord pharmacology of adrenergic agonist-mediated antinociception.Journal of Pharmacology and Experimental Therapeutics 213, 525–33.

    Google Scholar 

  • Rexed, B. (1954) A cytoarchitectonic atlas of the spinal cord in the cat.Journal of Comparative Neurology 100, 297–379.

    Google Scholar 

  • Ryall, R. W. &De Groat, W. C. (1972) The microelectrophoretic administration of noradrenaline, 5-hydroxytryptamine, acetylcholine and glycine to sacral parasympathetic preganglionic neurones.Brain Research 37, 345–7.

    Google Scholar 

  • Sawynok, J. &Reid, A. (1986) Role of ascending and descending noradernergic pathways in the antinociceptive effect of Baclofen and Clonidine.Brain Research 386, 341–50.

    Google Scholar 

  • Séguéla, P., Watkins, K. C., Geffard, M. &Descarries, L. (1990) Noradrenaline axon terminals in adult rat neocortex: an immunocytochemical analysis in serial thin sections.Neuroscience 35, 249–64.

    Google Scholar 

  • Simon, O. R. &Schramm, L. P. (1983) Spinal superfusion of dopamine excites renal sympathetic nerve activity.Neuropharmacology 22, 287–93.

    Google Scholar 

  • Skagerberg, G., Bjorklund, A., Lindvall, O. &Schmidt, R. H. (1982) Origin and termination of the diencephalo-spinal dopamine system in the rat.Brain Research Bulletin 9, 237–44.

    Google Scholar 

  • Sternberger, L. A., Hardy Jr, P. H., Cuculis, J. J. &Meyer, H. G. (1970) The unlabeled antibody enzyme method of immunohistochemistry preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes.Journal of Histochemistry and Cytochemistry 18, 315–33.

    Google Scholar 

  • Sullivan, A. F., Dashwood, M. R. &Dickenson, A. H. (1987) α2-adrenoceptor modulation of nociception in rat spinal cord: location, effects and interaction with morphine.European Journal of Pharmacology 138, 169–77.

    Google Scholar 

  • Swanson, L. W. &Hartman, B. K. (1975) The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-β-hydroxylase as marker.Journal of Comparative Neurology 163, 467–506.

    Google Scholar 

  • Wang, S. C. &Ranson, S. W. (1939) Autonomic responses to electrical stimulation of the lower brain stem.Journal of Comparative Neurology 71, 437–55.

    Google Scholar 

  • Ward, D. G. &Gunn, C. G. (1976)Locus coeruleus complex: elicitation of a pressor response and a brain stem region necessary for its occurrence.Brain Research 107, 401–6.

    Google Scholar 

  • Weight, F. F. &Salmoiraghi, G. C. (1967) Motoneuron depression by noradrenaline.Nature 213, 1229–30.

    Google Scholar 

  • Westlund, K. N., Bowker, R. M., Ziegler, M. G. &Coulter, J. D. (1981) Origins of spinal noradrenergic pathways demonstrated by retrograde transport of antibody to dopamine-β-hydroxylase.Neuroscience Letters 25, 243–49.

    Google Scholar 

  • Westlund, K. N., Bowker, R. M., Ziegler, M. G. &Coulter, J. D. (1982) Descending noradrenergic projections and their spinal terminations.Progress in Brain Research 57, 219–38.

    Google Scholar 

  • Westlund, K. N., Bowker, R. M., Ziegler, M. G. &Coulter, J. D. (1983) Nordrenergic projections to the spinal cord of the rat.Brain Research 263, 15–31.

    Google Scholar 

  • Westlund, K. N., Bowker, R. M., Ziegler, M. G. &Coulter, J. D. (1984) Origins and terminations of descending noradrenergic projections to the spinal cord of the monkey.Brain Research 292, 1–16.

    Google Scholar 

  • White, S. R. &Neuman, R. S. (1980) Facilitation of spinal motoneuron excitability by 5-hydroxytryptamine and noradrenaline.Brain Research 188, 119–27.

    Google Scholar 

  • Wikberg, J. E. S. &Hajos, M. (1987) Spinal cord α2-adrenoceptors may be located postsynaptically with respect to primary sensory neurons: destruction of primary C-afferents with neonatal capsaicin does not affect number of [3H] clonidine binding sites in mice.Neuroscience Letters 76, 63–8.

    Google Scholar 

  • Wolters, J. G., Steinbusch, H. W. M. &Bol, J. G. J. M. (1989) The distribution of dopamine versus noradrenaline immunoreactive fibers and cell bodies in the spinal cord of the rat.Abstracts of the 12th European Neuroscience Society, 10.17.

  • Yakovleff, A., Roby-Brami, A., Guezard, B., Man-Sour, H., Bussel, B. &Privat, A. (1989) Locomotion in rats transplanted with noradrenergic neurons.Brain Research Bulletin 22, 115–21.

    Google Scholar 

  • Yoshimura, M., Polosa, C. &Nishi, S. (1986) Noradrenaline modifies sympathetic preganglionic neuron spike and after potential.Brain Research 362, 370–74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajaofetra, N., Ridet, J.L., Poulat, P. et al. Immunocytochemical mapping of noradrenergic projections to the rat spinal cord with an antiserum against noradrenaline. J Neurocytol 21, 481–494 (1992). https://doi.org/10.1007/BF01186952

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01186952

Keywords

Navigation