Skip to main content
Log in

Ultrastructural relationships of serotonin and GABA terminals in the rat suprachiasmatic nucleus. Evidence for a close interconnection between the two afferent systems

  • Published:
Journal of Neurocytology

Summary

Serotonin (5-HT) and γ-aminobutyric acid (GABA) nerve endings were identified in the rat suprachiasmatic nucleus (SCN) by combined [3H]5-HT uptake radioautography and glutamate decarboxylase (GAD) immunocytochemistry at the electron microscope level. In areas of good overlap between radioautographic and immunocytochemical labellings, there were no axonal varicosities exhibiting both labellings, indicating that 5-HT and GABA are not co-localized in the SCN. The systematic survey in these areas of all profiles that had accumulated [3H]5-HT and of all GAD-immunoreactive varicosities allowed the analysis of 247 of the former and 896, i.e. an almost four-fold greater number, of the latter. This seems concordant with the view that GABA endings would be the most numerous of all classes of nerve terminals so far identified in the SCN. More than 22% of the [3H]5-HT labelled profiles showed the membrane specialization typically associated with synap'tic junctions. Thereby, it was possible to evaluate that about 45% of the 5-HT terminals actually form a synapse in the SCN. Some 37% of the GAD-positive varicose profiles which could be formally interpreted also showed well differentiated synaptic contacts, suggesting that the GABAergic innervation of the SCN could be entirely junctional. Whereas 5-HT terminals usually innervated only one dendritic or somatic element, a convergence of several GABAergic terminals onto the same postsynaptic target also receiving a 5-HT input was frequently observed. Of all the [3H]5-HT labelled varicose profiles scanned, as much as 41% were directly apposed to at least one GAD-immunoreactive profile, indicating that these 5-HT/GABA axonal interfaces could well represent privileged sites of interactions between the two transmitters. Taken together, these data could be of potential value in determining the neurochemical mechanisms subserving cellular integration of rhythmic signals in the SCN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aghajanian, G. K., Bloom, F. E. &Sheard, M. H. (1969) Electron microscopy of degeneration within the serotonin pathway of rat brain.Brain Research 13, 266–73.

    PubMed  Google Scholar 

  • Albers, H. E. &Ferris, C. F. (1984) Neuropeptide Y: role in light-dark cycle entrainment of hamster circadian rhythms.Neuroscience Letters 50, 163–68.

    PubMed  Google Scholar 

  • Albers, H. E., Ferris, C. F., Leeman, S. E. &Goldman, B. D. (1984) Avian pancreatic polypeptide phase shifts hamster circadian rhythms when microinjected into the suprachiasmatic region.Science 223, 833–35.

    PubMed  Google Scholar 

  • Arezki, F., Afailal, I., Bosler, O., Steinbusch, H. W. M. &Calas, A. (1987) Serotonin and serotoninergic neurons. A radioautographic and immunocytochemical study of the nucleus raphe dorsalis and nucleus dorsemedialis hypothalami.La Cellule 74, 245–61.

    Google Scholar 

  • Azmitia, E. C. &Segal, M. (1978) An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei of the rat.Journal of Comparative Neurology 179, 641–68.

    PubMed  Google Scholar 

  • Beaudet, A. &Sotelo, C. (1981) Synaptic remodeling of serotonin axon terminals in rat agranular cerebellum.Brain Research 206, 305–29.

    PubMed  Google Scholar 

  • Belin, M. F., Nanopoulos, D., Didier, M., Aguera, M., Stein-Busch, H., Verhofstad, A., Maitre, M. &Pujol, J. F. (1983) Immunohistochemical evidence for the presence of gamma-aminobutyric acid and serotonin in one nerve cell. A study on the raphe nuclei of the rat using antibodies to glutamate decarboxylase and serotonin.Brain Research 275, 329–39.

    PubMed  Google Scholar 

  • Bosler, O. &Beaudet, A. (1985) VIP neurons as prime synaptic targets for serotonin afferents in rat suprachiasmatic nucleus: a combined radioautographic and immunocytochemical study.Journal of Neurocytology 14, 749–63.

    PubMed  Google Scholar 

  • Bosler, O., Beaudet, A. &Pickel, V. M. (1986) Characterization of chemically defined neurons and their cellular relationships by combined immunocytochemistry and radioautographic localization of transmitter uptake sites.Journal of Electron Microscopy Technique 4, 21–39.

    Google Scholar 

  • Card, J. P. &Moore, R. Y. (1982) Ventral lateral geniculate nucleus afferents to the rat suprachiasmatic nucleus exhibit avian pancreatic polypeptide-like immunoreactivity.Journal of Comparative Neurology 206, 390–96.

    PubMed  Google Scholar 

  • Card, J. p. &Moore, R. Y. (1984) The suprachiasmatic nucleus of the golden hamster: immunohistochemical analysis of cell and fiber distribution.Neuroscience 13, 415–31.

    PubMed  Google Scholar 

  • Descarries, L. &Beaudet, A. (1978) The serotonin innervation of adult rat hypothalamus. In:Cell Biology of Hypothalamic Neurosecretion (edited by Vincent, J. D. & Kordon, C.), Colloques Int. CNRS, Vol. 280, pp. 135–53. Paris: Editions du CNRS.

    Google Scholar 

  • Descarries, L. &Beaudet, A. (1983) The use of radioautography for investigating transmitter-specific neurons. In:Handbook of Chemical Neuroanatomy, Vol. 1:Methods in Chemical Neuroanatomy (edited by BjÖrkLUND, A. & Hökfelt, T.), pp. 286–364. Amsterdam: Elsevier.

    Google Scholar 

  • François-Bellan, A. M., Hery, M., Barrit, M. C., Faudon, M. &Hery, F. (1987) The stimulation of GABA receptors increases serotonin release in the rat suprachiasmatic area.Neurochemistry International 11, 55–62.

    Google Scholar 

  • François-Bellan, A. M., Hery, M., Faudon, M. &Hery, F. (1988) Evidence for GABA control of serotonin metabolism in the rat suprachiasmatic area.Neurochemistry International (in press).

  • Fuxe, K. (1965) Evidence for the existence of monoamine neurons in the central nervous system. IV. The distribution of monoamine terminals in the central nervous system.Acta Physiologica Scandinavica 64, Suppl. 247, 39–85.

    Google Scholar 

  • Gamrani, H., Harandi, M., Belin, M. F., Dubois, M. P. &Calas, A. (1984) Direct electron microscopic evidence for the coexistence of GABA uptake and endogenous serotonin in the same rat central neurons by coupled radioautographic and immunohistochemical procedures.Neuroscience Letters 48, 25–30.

    PubMed  Google Scholar 

  • Güldner, F. H. (1978) Synapses of optic nerve afferents in the rat suprachiasmatic nucleus. I. Identification, qualitative description, development and distribution.Cell and Tissue Research 194, 17–35.

    PubMed  Google Scholar 

  • Guy, J., Bosler, O., Dusticier, G., Pelletier, G. &Calas, A. (1987) Morphological correlates of serotoninneuropeptide Y interactions in the rat suprachiasmatic nucleus: combined radioautographic and immunocytochemical data.Cell and Tissue Research 250, 657–62.

    PubMed  Google Scholar 

  • Harandi, M., Didier, M., Aguera, M., Calas, A. &Belin, M. F. (1986) GABA and serotonin (5-HT) pattern in the supraependymal fibers of the rat epithalamus: combined radioautographic and immunocytochemical studies. Effect of 5-HT content on [3H]GABA accumulation.Brain Research 370, 241–49.

    PubMed  Google Scholar 

  • Harrington, M. E., Nance, D. M. &Rusak, B. (1985) Neuropeptide Y immunoreactivity in the hamster geniculosuprachiasmatic tract.Brain Research Bulletin 15, 465–72.

    PubMed  Google Scholar 

  • Harrington, M. E., Nance, D. M. &Rusak, B. (1987) Double labelling of neuropeptide Y-immunoreactive neurons which project from the geniculate to the suprachiasmatic nuclei.Brain Research 410, 275–82.

    PubMed  Google Scholar 

  • Hendrickson, A. E., Wagoner, N. &Cowan, W. M. (1972) An autoradiographic and electron microscopic study of retino-hypothalamic connections.Zeitschrift für Zellforschung 135, 1–26.

    Google Scholar 

  • Kiss, J., Leranth, Cs. &Halasz, B. (1984) Serotoninergic endings on VIP-neurons in the suprachiasmatic nucleus and on ACTH-neurons in the arcuate nucleus of the rat hypothalamus. A combination of high resolution autoradiography and electron microscopic immunocytochemistry.Neuroscience Letters 44, 119–24.

    PubMed  Google Scholar 

  • Kordon, C., Hery, M., Szafarczyk, A., Ixart, G. &Assenmacher, I. (1981) Serotonin and the regulation of pituitary hormone secretion and of neuroendocrine rhythms.Journal de Physiologie (Paris) 77, 489–96.

    Google Scholar 

  • Kuhar, M. J., Aghajanian, G. K. &Roth, R. H. (1972) Tryptophan hydroxylase activity and synaptosomal uptake of serotonin in discrete brain regions after midbrain raphe lesions: correlations with serotonin levels and histochemical fluorescence.Brain Research 44, 165–76.

    PubMed  Google Scholar 

  • Millhorn, D. E., Hokfelt, T., Seroogy, K., Oertel, W., Verhofstad, A. A. J. &Wu, J. Y. (1987) Immunohistochemical evidence for colocalization of γ-aminobutyric acid and serotonin in neurons of the ventral medulla oblongata projecting to the spinal cord.Brain Research 410, 179–85.

    PubMed  Google Scholar 

  • Moore, R. Y. (1983) Organization and function of a central nervous system circadian oscillator: the suprachiasmatic hypothalamic nucleus.Federation Proceedings 42, 2783–89.

    PubMed  Google Scholar 

  • Moore, R. Y., Halaris, A. E. &Jones, B. A. (1978) Serotonin neurons of the midbrain raphe: ascending projections.Journal of Comparative Neurology 180, 417–38.

    PubMed  Google Scholar 

  • Moore, R. Y. &Lenn, N. J. (1972) A retinohypothalamic projection in the rat.Journal of Comparative Neurology 146, 1–14.

    PubMed  Google Scholar 

  • Mugnaini, E. &Oertel, W. H. (1985) An atlas of the distribution of GABA-ergic neurons and terminals in the rat CNS as revealed by GAD immunohistochemistry. InHandbook of Chemical Neuroanatomy Vol. 4:GABA and Neuropeptides in the CNS. Part I (edited by BjÖrklund, A. & HÖkfelt, T.), pp. 436–595. Amsterdam: Elsevier.

    Google Scholar 

  • Nojyo, Y. &Sano, Y. (1978) Ultrastructure of the serotoninergic nerve terminals in the suprachiasmatic and interpeduncular nuclei of rat brain.Brain Research 149, 482–8.

    PubMed  Google Scholar 

  • Oertel, W. H., Schmechel, D. E., Tappaz, M. L. &Kopin, I. J. (1981a) Production of a specific antiserum to rat brain glutamic acid dacarboxylase (GAD) by injection of an antigen-antibody complex.Neuroscience 6, 2689–700.

    PubMed  Google Scholar 

  • Oertel, W. H., Schmechel, D. E., Mugnaini, E., Tappaz, M. L. &Kopin, I. J. (1981b) Immunocytochemical localization of glutamate decarboxylase in rat cerebellum with a new antiserum.Neuroscience 6, 2715–35.

    PubMed  Google Scholar 

  • Osborne, N. N. &Beaton, D. W. (1986) Direct histochemical localization of 5,7-dihydroxytryptamine and the uptake of serotonin by a subpopulation of GABA neurones in the rabbit retina.Brain Research 382, 158–62.

    PubMed  Google Scholar 

  • Ralph, M. R. &Menaker, M. (1985) Bicuculline blocks circadian phase delays but not advances.Brain Research 325, 362–65.

    PubMed  Google Scholar 

  • Rusak, B. &Zucker, I. (1979) Neural regulation of circadian rhythms.Physiological Reviews 59, 449–527.

    PubMed  Google Scholar 

  • Soghomonian, J. J., Beaudet, A. &Descarries, L. (1988) Ultrastructural relationships of central serotoninergic neurons. In:Neuronal Serotonin (edited byOsborne, N. N. &Hamon, M.) pp. 57–92. London: John Wiley & Sons.

    Google Scholar 

  • Steinbush, H. W. M. &Nieuwenhuys, R. (1981) Localization of serotonin-like immunoreactivity in the central nervous system and pituitary of rat, with special references to the innervation of the hypothalamus. In:Serotonin-Current Aspects of Neurochemistry and Function (edited byHaber, B., Gabay, S., Issidorides, M. R. &Alivisatos, S. G. A.), pp. 7–35. New York: Plenum Press.

    Google Scholar 

  • Tappaz, M. L., Oertel, W. H., Wassef, M. &Mugnaini, E. (1982) Central GABA-ergic neuroendocrine regulations: pharmacological and morphological evidence.Progress in Brain Research 55, 77–96.

    PubMed  Google Scholar 

  • Tappaz, M. L., Wassef, M., Oertel, W. H., Paut, L. &Pujol, J. F. (1983) Light- and electron-microscopic immunocytochemistry of glutamic acid decarboxylase (GAD) in the basal hypothalamus: Morphological evidence for neuroendocrine γ-aminobutyrate (GABA).Neuroscience 9, 271–87.

    PubMed  Google Scholar 

  • Van De Kar, L. D. &Lorens, S. A. (1979) Differential serotonergic innervation of individual hypothalamic nuclei and other forebrain regions by dorsal and median midbrain raphe nuclei.Brain Research 162, 45–54.

    PubMed  Google Scholar 

  • Van Den Pol, A. N. (1986) Gamma-aminobutyrate, gastrin releasing peptide, serotonin, somatostatin, and vaso-pressin: ultrastructural immunocytochemical localization in presynaptic axons in the suprachiasmatic nucleus.Neuroscience 17, 643–59.

    PubMed  Google Scholar 

  • Van Den Pol, A. N. &Gorcs, T. (1986) Synaptic relationships between neurons containing vasopressih, gastrinreleasing peptide, vasoactive intestinal polypeptide, and glutamate decarboxylase immunoreactivity in the suprachiasmatic nucleus: dual ultrastructural immunocytochemistry with gold-substituted silver peroxidase.Journal of Comparative Neurology 252, 507–21.

    PubMed  Google Scholar 

  • Van Den Pol, A. N. &Tsujimoto, K. L. (1985) Neurotransmitters of the hypothalamic suprachiasmatic nucleus: immunocytochemical analysis of 25 neuronal antigens.Neuroscience 4, 1049–86.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosler, O. Ultrastructural relationships of serotonin and GABA terminals in the rat suprachiasmatic nucleus. Evidence for a close interconnection between the two afferent systems. J Neurocytol 18, 105–113 (1989). https://doi.org/10.1007/BF01188429

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01188429

Keywords

Navigation