Skip to main content
Log in

Macromolecular structure of axon membrane and action potential conduction in myelin deficient and myelin deficient heterozygote rat optic nerves

  • Published:
Journal of Neurocytology

Summary

The macromolecular structure of the axon membrane in optic nerves from 25-day-old male littermate control and myelin deficient (md) rats and 16-month-old md heterozygotic rats was examined with quantitative freeze-fracture electron microscopy.

The axon membrane of control optic nerves displayed an asymmetrical partitioning of intramembranous particles (IMPs); P-fracture faces of myelinated internodal axon membrane were more particulate than those of pre-myelinated axons (∼1600 υ 1100 μm−2, respectively), while relatively few IMPs (∼150 μm−2) were present on external faces (E-faces) of internodal or pre-myelinated axon membrane. Amyelinated axons of md optic nerves also exhibited an asymmetrical partitioning of IMPs; protoplasmic membrane face (P-face) IMP densities, taken as a group, exhibited a wide range (∼600–2300 μm−2) and, in most regions, E-faces displayed a relatively low IMP density (∼175 μm−2). Axons of > 0.4 μm diameter exhibited significantly greater mean P-face IMP density than axons < 0.4 μm diameter. Aggregations of E-face IMPs (∼350 μm−2) were occasionally observed along amyelinated axon membrane from md optic nerves.

Optic nerves from md heterozygote rats exhibit myelin mosaicism, permitting examination of myelinated and amyelinated axon membrane along the same tract. The axon membrane exhibits different ultrastructure in these two domains. Myelinated internodal axon membrane from md heterozygote optic nerves exhibits similar P- and E-face IMP densities to those of control internodal axolemma (∼1800 and 140 μm−2, respectively). Amyelinated axons in the heterozygote exhibit a membrane structure similar to amyelinated axons in md optic nerve. P-face IMP density of large diameter (> 0.4 μm) amyelinated axons from md heterozygote optic nerves is significantly greater than that of small calibre (< 0.4 μm) axons. In most regions, amyelinated axon membrane exhibits a relatively low E-face IMP density (∼200 μm−2); however, focal aggregations (∼400 μm−2) of E-face particles are present.

Electrophysiological recordings demonstrate that amyelinated axons in md optic nerves support the conduction of action potentials. Compound action potentials in md optic nerves exhibit a monophasic configuration, even at 20-days postnatal, similar to that of pre-myelinated optic nerve of 7-day-old normal rats. Moreover, conduction velocities in the amyelinated 20-day-old md optic nerve are similar to those displayed by pre-myelinated axons from 7-day-old optic nerves. These results are consistent with persistence of action potential conduction in md axons, despite the absence of myelination in the optic nerves of the md mutant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ariyasu, R. G., Nichol, J. A. &Ellisman, M. H. (1985) Localization of sodium/potassium adenosine triphosphatase in multiple cell types of the murine nervous system with antibodies raised against the enzyme from kidney.Journal of Neuroscience 5, 2581–96.

    Google Scholar 

  • Barron, K. D., Dentinger, M. P., Csiza, C. K., Keegan, S. M. &Mankes, R. (1987) Abnormalities of central axons in a dysmyelinative rat mutant.Experimental and Molecular Pathology 47, 125–42.

    Google Scholar 

  • Bevan, S., Chiu, S. Y., Gray, P. T. A. &Ritchie, J. M. (1985) The presence of voltage-gated sodium, potassium and chloride channels in rat cultured astrocytes.Proceedings of the Royal Society of London, Series B 225, 299–313.

    Google Scholar 

  • Black, J. A. &Waxman, S. G. (1986) Molecular structure of the axolemma of developing axons following altered gliogenesis in rat optic nerve.Developmental Biology 115, 301–12.

    Google Scholar 

  • Black, J. A. &Waxman, S. G. (1988) Freeze-fracture studies on unmyelinated axolemma in rat cervical sympathetic trunk: Correlation with saxitoxin binding.Proceedings of the Royal Society of London, Series B 233, 45–54.

    Google Scholar 

  • Black, J. A., Fields, D. R. &Waxman, S. G. (1988) Macromolecular structure of axonal membrane in the optic nerve of the jimpy mouse.Journal of Neuropathology and Experimental Neurology 47, 588–98.

    Google Scholar 

  • Black, J. A., Foster, R. E. &Waxman, S. G. (1982) Ratoptic nerve: Freeze-fracture studies during development of myelinated axons.Brain Research 250, 1–10.

    Google Scholar 

  • Black, J. A., Friedman, B., Waxman, S. G., Elmer, L. W. &Angelides, K. J. (1989) Immuno-ultrastructural localization of sodium channels at nodes of Ranvier and perinodal astrocytes in rat optic nerve.Proceedings of the Royal Society of London, in press.

  • Black, J. A., Sims, T. J., Waxman, S. G. &Gilmore, S. A. (1985) Membrane ultrastructure of developing axons in glial cell deficient rat spinal cord.Journal of Neurocytology 13, 79–104.

    Google Scholar 

  • Black, J. A., Waxman, S. G. &Hildebrand, C. (1984) Membrane specialization and axo-glial association in the rat retinal nerve fibre layer: freeze-fracture observations.Journal of Neurocytology 13, 417–30.

    Google Scholar 

  • Black, J. A., Waxman, S. G., Sims, T. J. &Gilmore, S. A. (1986) Effects of delayed myelination by oligodendrocytes and Schwann cells on the macromulecular structure of axonal membrane in rat spinal cord.Journal of Neurocytology 15, 745–62.

    Google Scholar 

  • Black, J. A., Waxman, S. G. &Smith, M. A. (1987) Macromolecular structure of axonal membrane during acute experimental allergic encephalomyelitis in rat and guinea pig spinal cord.Journal of Neuropathology and Experimental Neurology 46, 167–84.

    Google Scholar 

  • Blakemore, W. F. &Smith, K. J. (1983) Node-like axonal specializations along demyelinated central nerve fibres: ultrastructural observations.Acta Neuropathologica 60, 291–6.

    Google Scholar 

  • Connors, B. W., Ransom, B. R., Kunis, D. M. &Gutnick, M. J. (1982) Activity-dependent K+ accumulation in the developing rat optic nerve.Science 216, 1341–3.

    Google Scholar 

  • Csiza, C. K. &De Lahun'ta, A. (1979) Myelin-deficiency (md), a neurologic mutant in the Wistar rat.American Journal of Pathology 95, 215–24.

    Google Scholar 

  • Dentinger, M. P., Barron, K. D. &Csiza, C. K. (1982) Ultrastructure of the central nervous system in a myelindeficient rat.Journal of Neurocytology 11, 671–91.

    Google Scholar 

  • Dentinger, M. P., Barron, K. D. &Csiza, C. K. (1985) Glial and axonal development in optic nerve of myelin deficient rat mutant.Brain Research 344, 255–66.

    Google Scholar 

  • Duncan, I. D., Hammang, J. P. &Trapp, B. D. (1987a) Abnormal compact myelin in the myelin-deficient rat: Absence of proteolipid protein correlates with a defect in the intraperiod line.Proceedings of the National Academy of Sciences USA 84, 547–51.

    Google Scholar 

  • Duncan, I. D., Hammang, J. P. &Jackson, K. F. (1987b) Myelin mosaicism in female heterozygotes of the canine shaking pup and myelin-deficient rat mutants.Brain Research 402, 168–72.

    Google Scholar 

  • Duncan, I. D., Hammang, J. P., Jackson, K. F., Wood, P. M., Bunge, R. P. &Langford, L. (1988a) Transplantation of oligodendrocytes and Schwann cells into the spinal cord of the myelin-deficient rat.Journal of Neurocytology 17, 351–60.

    Google Scholar 

  • Duncan, I. D., Hammang, J. P. &Gilmore, S. A. (1988b) Schwann cell myelination of the myelin deficient rat spinal cord following X-irradiation.Glia 1, 233–9.

    Google Scholar 

  • Ellisman, M. H. (1979) Molecular specializations of the axon membrane at nodes of Ranvier are not dependent upon myelination.Journal of Neurocytology 8, 719–35.

    Google Scholar 

  • Foster, R. E., Connors, B. &Waxman, S. G. (1982) Rat optic nerve: Electrophysiological, pharmacological and anatomical studies during development.Developmental Brain Research 3, 361–76.

    Google Scholar 

  • Foster, R. E., Whalen, C. C. &Waxman, S. G. (1980) Reorganization of the axonal membrane of demyelinated nerve fibres: Morphological evidence.Science 210, 661–3.

    Google Scholar 

  • Gilmore, S. A. (1966) Delayed myelination of neonatal rat spinal cord induced by X-irradiation.Neurology 16, 749–53.

    Google Scholar 

  • Gordon, T. R., Kocsis, J. D. &Waxman, S. G. (1988) Evidence for the presence of two types of potassium channels in the rat optic nerve.Brain Research 447, 1–9.

    Google Scholar 

  • Gray, P. T. A. &Ritchie, J. M. (1985) Ion channels in Schwann and glial cells.Trends in Neuroscience 8, 411–15.

    Google Scholar 

  • Hildebrand, C. (1971) Ultrastructural and Light Microscopic studies of the nodal region in large myelinated fibres of feline spinal cord white matter.Acta Physiologica Scandinavica Suppl.364, 43–71.

    Google Scholar 

  • Hildebrand, C. &Skoglund, S. (1971) Calibre spectra of some fibre tracts in the feline central nervous system during postnatal development.Acta Physiologica Scandinavica Suppl.364, 3–28.

    Google Scholar 

  • Hildebrand, C. &Waxman, S. G. (1983) Regional nodelike membrane specializations in non-myelinated axons of rat retinal nerve fibre layer.Brain Research 258, 23–32.

    Google Scholar 

  • Hudson, L. D., Berndt, J. A., Puckett, C., Kozak, C. A. &Lazzarini, R. A. (1987) Aberrant splicing of proteolipid protein mRNA in the dysmyelinating jimpy mutant mouse.Proceedings of the National Academy of Sciences USA 84, 1454–58.

    Google Scholar 

  • Jackson, K. F. &Duncan, I. D. (1988) Cell kinetics and cell death in the optic nerve of the myelin deficient rat.Journal of Neurocytology 17, 657–70.

    Google Scholar 

  • Livingston, R. B., Pfenninger, K., Moor, H. &Akert, K. (1973) Specialized paranodal and interparanodal glialaxonal functions in the peripheral and central nervous system: A freeze-etching study.Brain Research 58, 1–24.

    Google Scholar 

  • Naismith, A. L., Simons, R., Alon, N., Fahim, S., Csiza, C. K. &Riordan, J. R. (1987) Structure and expression of the myelin PLP gene.Journal of Neurochemistry 48, Suppl. S32.

    Google Scholar 

  • Oaklander, A. L., Pellegrino, R. G. &Ritchie, J. M. (1984) Saxitoxin binding to central and peripheral nervous tissue of the myelin deficiency (md) mutant rat.Brain Research 307, 393–7.

    Google Scholar 

  • Privat, A., Valat, J., Lachapelle, F., Baumann, N. &Fulcrand, J. (1982) Radioautographic evidence for the protracted proliferation of glial cells in the central nervous system of jimpy mice.Developmental Brain Research 2, 411–16.

    Google Scholar 

  • Raine, C. S. (1984) On the association between perinodal astrocyte processes and the node of Ranvier in the C.N.S.Journal of Neurocytology 13, 21–7.

    Google Scholar 

  • Ransom, B. R., Yamate, C. L., Black, J. A. &Waxman, S. G. (1985) Rat optic nerve: Disruption of gliogenesis by 5-azacytidine during early postnatal development.Brain Research 337, 41–51.

    Google Scholar 

  • Rasminsky, M., Kearney, R. E., Aguayo, A. J. &Bray, G. M. (1978) Conduction of nervous impulses in spinal roots and peripheral nerves of dystrophic mice.Brain Research 143, 71–85.

    Google Scholar 

  • Rosenbluth, J. (1981) Freeze-fracture approaches to ionophore localization in nerve and myelin-deficient nerves. InDemyelinating Diseases: Basic and Clinical Electrophysiology (edited byWaxman, S. G. &Ritchie, J. M.), pp. 391–418. New York: Raven Press.

    Google Scholar 

  • Rosenbluth, J. (1976) Intramembranous particle distribution at the node of Ranvier and adjacent axolemma in myelinated axons of the frog brain.Journal of Neurocytology 5, 731–45.

    Google Scholar 

  • Rosenbluth, J. (1985) Intramembranous particle patches in myelin-deficient rat axons.Neuroscience Letters 62, 19–24.

    Google Scholar 

  • Rosenbluth, J. (1987) Abnormal axoglial junctions in the myelin-deficient rat mutant.Journal of Neurocytology 16, 497–509.

    Google Scholar 

  • Rosenbluth, J. &Blakemore, W. F. (1984) Structural specializations in cat of chronically demyelinated spinal cord axons as seen in freeze-fracture replicas.Neuroscience Letters 48, 171–7.

    Google Scholar 

  • Rosenbluth, J., Hasegawa, M. &Schiff, R. (1989) Myelin formation in myelin-deficient rat spinal cord following transplantation of normal fetal spinal cord.Neuroscience Letters 97, 35–40.

    Google Scholar 

  • Rosenbluth, J., Tao-Cheng, H. J. &Blakemore, W. F. (1985) Dependence of axolemmal differentation on contact with glial cells in chronically demyelinated lesions of cat spinal cord.Brain Research 358, 287–302.

    Google Scholar 

  • Salzer, J. L., Bunge, R. P. &Glaser, L. (1980a) Studies of Schwann cell proliferation. III. Evidence for the surface localization of the neurite mitogen.Journal of Cell Biology 84, 767–78.

    Google Scholar 

  • Salzer, J. L., Williams, A. K., Glaser, L. &Bunge, R. P. (1980b) Studies of Schwann cell proliferation. II. Characterization of the stimulation and specificity of the response to a neurite membrane fraction.Journal of Cell Biology 84, 753–66.

    Google Scholar 

  • Sims, T. J., Waxman, S. G., Black, J. A. &Gilmore, S. A. (1985) Perinodal astrocytic processes at nodes of Ranvier in developing normal and glial cell deficient rat spinal cord.Brain Research 337, 321–31.

    Google Scholar 

  • Smith, K. J., Bostock, H. &Hall, S. M. (1982) Saltatory conduction precedes remyelination in axons demyelinated with lysophosphatidyl choline.Journal of Neurological Science 54, 13–31.

    Google Scholar 

  • Yanagisawa, K., Duncan, I. D., Hammang, J. P. &Quarles, R. H. (1986) Myelin-deficient rat: Analysis of myelin proteins.Journal of Neurochemistry 47, 1901–7.

    Google Scholar 

  • Waxman, S. G. (1977) Conduction in myelinated, unmyelinated, and demyelinated fibres.Archives of Neurology 34, 585–90.

    Google Scholar 

  • Waxman, S. G. (1978) Variations in axonal morphology and their functional implications. InPhysiology and Pathobiology of Axons (edited byWaxman, S. G.) pp. 169–50. New York: Raven Press.

    Google Scholar 

  • Waxman, S. G. &Black, J. A. (1984) Freeze-fracture ultrastructure of the perinodal astrocyte and associated glial junctions.Brain Research 308, 77–87.

    Google Scholar 

  • Waxman, S. G. &Black, J. A. (1988) Unmyelinated and myelinated axon membrane from rat corpus callosum: Differences in macromolecular structure.Brain Research 453, 337–43.

    Google Scholar 

  • Waxman, S. G. &Sims, T. J. (1984) Specificity in central myelination: Evidence for local regulation of myelin thickness.Brain Research 292, 179–85.

    Google Scholar 

  • Waxman, S. G., Black, J. A., Kocsis, J. D. &Ritchie, J. M. (1989) Low density of sodium channels supports action potential conduction in axons of neonatal rat optic nerve.Proceedings of the National Academy of Sciences USA 86, 1406–10.

    Google Scholar 

  • Zeller, N. K., Hudson, L. D., Lazzarini, R. A. &Duboisdalcq, M. (1985) The developmental expression of MBP and PLP in the myelin-deficient rat.Journal of Cell Biology 101, 434a.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waxman, S.G., Black, J.A., Duncan, I.D. et al. Macromolecular structure of axon membrane and action potential conduction in myelin deficient and myelin deficient heterozygote rat optic nerves. J Neurocytol 19, 11–28 (1990). https://doi.org/10.1007/BF01188436

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01188436

Keywords

Navigation