Skip to main content
Log in

Evoked and induced gamma-band activity of the human cortex

  • Published:
Brain Topography Aims and scope Submit manuscript

Summary

The evoked gamma-band activity is an event related rhythmic response which persists within the first 100ms after the stimulus onset. It shows spectral peaks between 30 and 40 Hz in the auditory, between 45 and 55 Hz in the somatosensory and between 100 and 110 Hz in the visual system. After separation of the wide-band activity in slow and gamma-band activity, a moving single equivalent current dipole model accounts for each activity almost completely. The induced gamma-band activity is not phase-locked to the stimulus or it is strongly gittering and thus it cannot be extracted in time domain. In this case we are using signal analysis methods in frequency domain. The evaluation of the induced brain gamma-band activity around 30 Hz shows differences to word and nonword stimuli. It was supposed that the induced gamma-band activity represents the synchronized activity of Hebbian cell assemblies correlated to words.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adrian, E.D. Olfactory reactions in the brain of the hedgehog. Journal of Physiology, 1942, 100: 459–473.

    Google Scholar 

  • Basar, E. and Bullock, T. Induced rhythms in the brain. Birkhäuser, 1992.

  • Basar, E. and Özesmi, C. The hyppocampal EEG activity and a systems analytical interpretation of averaged evoked potentials of the brain. Kybernetik, 1972, 12: 45–54.

    PubMed  Google Scholar 

  • Basar, E. and Ungan, P. A component analysis and principles derived for the understanding of evoked potentials of the brain: Studies of the hippocampus. Kybernetik, 1973, 12: 133–140.

    PubMed  Google Scholar 

  • Basar, E. A study of the time and frequency characteristics of the potentials evoked in the acoustical cortex. Kybernetik, 1972, 10: 61–64.

    PubMed  Google Scholar 

  • Basar, E. EEG-Dynamics and evoked potentials in sensory and cognitive processing by the brain. In: Dynamics of Cognitive and Sensory Processing by the Brain. (E. Basar, Ed), Springer-Verlag, Berlin-Heidelberg-New York, 1988: 311–318.

    Google Scholar 

  • Basar, E., Rosen, B., Basar-Eroglu, C. and Greitschus, F. The associations between 40 Hz-EEG and the middle latency response of the auditory evoked potential. Int J Neuroscience, 1987, 33: 103–117.

    Google Scholar 

  • Basar-Eroglu, C. and Basar, E. A compound P300-40 Hz response of the cat hippocampus. Int J Neuroscience, 1991, 60: 227–237.

    Google Scholar 

  • Braitenberg, V. and Pulvermüller, F. Entwurf einer neurologischen Theorie der Sprache. Naturwissenschaften, 1992, 103–117.

  • Bullock, T.H. and Achimowicz, J.Z. A comparative survey of event related brain oscillations, In: Oscillatory event related brain dynamics. (C. Pantev, T. Elbert and B. Lütkenhöner, Eds), Plenum Press, New York, 1994.

    Google Scholar 

  • Eckhorn, R., Bauer, R., Jordan, W., Brosch, S., Kruse, W., Munk, M. and Reitboeck, H.J. Coherent oscillations: a mechanism of feature linking in the visual cortex? Biological Cybernetics 1988, 60: 121–130.

    PubMed  Google Scholar 

  • Freeman, W.J. Mass action in the nervous system. Academic Press, New York, 1975.

    Google Scholar 

  • Freeman, W.J. Nonlinear dynamics of paleocortex manifested in the olfactory EEG. Biological Cybernetics, 1979, 35: 21–37.

    PubMed  Google Scholar 

  • Galambos, R. and Makeig, S. Dynamic changes in steady-state responses. In: Dynamics of sensory and cognitive processing by the brain. (E. Basar and T. Bullock, Eds), Springer, Berlin, 1988: 103–122.

    Google Scholar 

  • Galambos, R., Makeig, S. and Talmachoff, P.J. A 40-Hz auditory potential recorded from the human scalp. Proc Natl Acad Sci, 1981, 78: 2643–2647.

    PubMed  Google Scholar 

  • Gray, C.M., König, P., Engel, A.K. and Singer, W. Oscillatory response in the cat visual cortex exhibit intercolumnar synchronization which reflects global stimulus properties. Nature, 1989, 338: 334–337.

    PubMed  Google Scholar 

  • Hari, R., Hämäläinen, M. and Joutsiniemi, S.L. Neuromagnetic steady-state responses to auditory stimuli. J Acoust Soc Am, 1989, 86: 1033–9.

    PubMed  Google Scholar 

  • Kaukoranta, E. and Reinikainen, K. Somatosensory evoked magnetic fields from SI: an interpretation of the spatiotemporal field pattern and effects of stimulus repetition rate. Helskinki University of Technology, Low Temperature Laboratory Report, 1985, TKK-F-A581.

  • Kuhl, P.K., Williams, K.A., Lacerda, F., Stevens, K.N. and Lindblom, B. Linguistic experience alters phonetic perception in infants by 6 months of age. Science, 1992, 255: 606–608.

    PubMed  Google Scholar 

  • Mäkelä, J.P. and Hari, R. Evidence for cortical origin of the 40 Hz auditory evoked response in man. Electroenceph clin Neurophysiol, 1987, 66: 539–46.

    PubMed  Google Scholar 

  • Pantev, C., Elbert, T. and Lütkenhöner, B. Oscilatory event related brain dynamics. London, New York: Plenum Press, 1994.

    Google Scholar 

  • Pantev, C. and Elbert, T. The transient auditory evoked gamma-band field, In: Oscillatory Event Related Brain Dynamics. (C. Pantev, T. Elbert and B. Lütkenhöner, Eds), Plenum Press, London, New York, 1994.

    Google Scholar 

  • Pantev, C., Bertrand, O., Eulitz, C., Verkindt, C, Hampson, S., Schuirer, G. and Elbert, T. Specific tonotopic organizations of different areas of the human auditory cortex revealed by simultaneous magnetic and electric recordings. Electroenceph clin Neurophysiol, 1994, (in press).

  • Pantev, C., Elbert, T., Makeig, S., Hampson, S., Eulitz, C. and Hoke, M. Relationship of transient and steady-state auditory evoked fields. Electroenceph clin Neurophysiol, 1993, 88: 389–396.

    PubMed  Google Scholar 

  • Pantev, C., Makeig, S., Hoke, M., Galambos, R., Hampson, S. and Gallen, C. Human auditory evoked gamma-band magnetic fields. Proc Natl Acad Sci USA, 1991, 88: 8996–9000.

    PubMed  Google Scholar 

  • Ribari, U., Llinas, R., Kluger, A., Suk, J. and Ferris, S.H. Neuropathological dynamics of magnetic, auditory steady-state responses in Alzheimer's disease, In: Advances in Biomagnetism. (S. J. Williamson, M. Hoke, M. Stroink and M. Kotani, Eds), Plenum Press, New York, 1989: 311–314.

    Google Scholar 

  • Rockstroh, B., Elbert, T., Canavan, A., Lutzenberger, W. and Birbaumer, N. Slow cortical potentials and behaviour. Urban and Schwarzenberg, Baltimore, 1989.

  • Romani, G.L., Williamson, S.J., Kaufman, L. and Brenner, D. Characterization of the human auditory cortex by the neuromagnetic method. Exp Brain Res, 1982, 47: 381–93.

    PubMed  Google Scholar 

  • Rösler, F., Heil, M. and Glowalla, U. Monitoring retrieval from long-term memory by slow event-related potentials. Psychophysiology, 1993, 30: 170–182.

    PubMed  Google Scholar 

  • Sannita, W.G. Retinal and cortical oscillatory responses to patterned and unpatterned visual stimulation in man, In: Oscillatory event related brain dynamics. (C. Pantev, T. Elbert and B. Lütkenhöner, Eds), Plenum Press, London, New York, 1994.

    Google Scholar 

  • Sarvas, J. Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Physics in Med Biol, 1987, 32: 11–22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by a grant from the Deutsche Forschungsgemeinschaft (Klinische Forschergruppe Biomagnetismus und Biosignalanalyse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pantev, C. Evoked and induced gamma-band activity of the human cortex. Brain Topogr 7, 321–330 (1995). https://doi.org/10.1007/BF01195258

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01195258

Key words

Navigation