Skip to main content
Log in

Transcranial magnetic stimulation downregulates β-adrenoreceptors in rat cortex

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

Recently, a method for transcranial magnetic stimulation (TMS) of the brain has been developed. Thus, it is possible to explore neurochemical and behavioral effects of TMS in rats. Repeated TMS (9 days) reduced β-adrenergic receptor binding in cortex, as does electroconvulsive shock (ECS) and other antidepressant treatments. Thus TMS appears to be a potential antidepressive treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abel MS, Villegas F, Abreu J, Gimino F, Steiner S, Beer B, Meyerson LR (1983) The effect of rapid eye movement sleep deprivation on cortical beta-adrenergic receptors. Brain Res Bull 11: 229–734

    Google Scholar 

  • Arango V, Ernsberger P, Marzuk PM, Chen JS, Tierney H, Stanley M, Reis DJ, Mann JJ (1990) Autoradiographic demonstration of increased serotonin 5-HT2 and beta-adrenergic receptor binding sites in the brain of suicide victims. Arch Gen Psychiatry 47: 1038–1047

    Google Scholar 

  • Barker AT (1991) An introduction to the basic principles of magnetic nerve stimulation. J Clin Neurophysiol 8: 26–37

    PubMed  Google Scholar 

  • Basso AM, Depiante Depaoli M, Cancela L, Molina V (1993) Seven-day variable-stress regime alters cortical beta-adrenoceptor binding and immunologie responses: reversal by imipramine. Pharmacol Biochem Behav 45: 665–672

    PubMed  Google Scholar 

  • Belmaker RH, Fleischmann A (1995) Transcranial magnetic stimulation: a potential new frontier in psychiatry. Biol Psychiatry 38: 419–421

    PubMed  Google Scholar 

  • Biegon A, Israeli M (1986) Localization of the effects of electroconvulsive shock on beta adrenoceptors in the rat brain. Eur J Pharmacol 123: 329–334

    PubMed  Google Scholar 

  • Bergstrom DA, Kellar KJ (1979) Effects of electroconvulsive shock on monoaminergic receptor binding sites in rat brain. Nature 278: 464–466

    PubMed  Google Scholar 

  • Cohen RM, Cohen MR, McLellan CA (1986) Foot shock induces time and region specific adrenergic receptor changes in rat brain. Pharmacol Biochem Behav 24: 1587–92

    PubMed  Google Scholar 

  • Didier M, Zini R, Urien S, Sapena R, Tillement JP (1992) Labelling of rat brain β-adrenoceptors: [3H]CGP-12177 or [125I]iodocyanopindolol? J Receptor Res 12: 369–387

    Google Scholar 

  • Fleischmann A, Steppel J, Leon A, Belmaker RH (1994) The effect of transcranial magnetic stimulation compared with electroconvulsive shock on rat apomorphine-induced stereotypy. Eur Neuropsychopharmacol 4: 449–450

    Google Scholar 

  • Fleischmann A, Prolov K, Abarbanel J, Belmaker RH (1995) The effect of transcranial magnetic stimulation of rat brain on behavioral models of depression. Brain Res 669: 130–132

    PubMed  Google Scholar 

  • Fleischmann A, Talpalar AE, Grossman Y, Silverberg D, Belmaker RH (1996) Antidepressant potential of transcranial magnetic stimulation in rat models: comparison of slow versus rapid magnetic stimulation. In: Montgomery S, Halbreich U (eds) Pharmacotherapy of mood and cognition. American Psychiatric Press (in press)

  • George MS, Wassermann EM, William WA, et al (1995) Daily left prefrontal repetitive transcranial magnetic stimulation (rTMS) improves mood in refractory depression. Neuroreport 5: 1856–1853

    Google Scholar 

  • Grisaru N, Yaroslavsky U, Abarbanel J, Lamberg T, Belmaker RH (1994) Transcranial magnetic stimulation in depression and schizophrenia. Eur Neuropsychopharmacol 4: 287–288

    Google Scholar 

  • Heal DJ, Butler SA, Hurst EM, Buckett WR (1989) Antidepressant treatments, including sibutramine hydrochloride and electroconvulsive shock, decrease beta 1-but not beta 2-adrenoceptors in rat cortex. J Neurochem 53: 1019–1025

    PubMed  Google Scholar 

  • Henn FA, Edwards E (1994) Animal models in the study of genetic factors in human psychopathology. In: Papolos DF, Lachman HM (eds) Genetic studies in affective disorders. John Wiley & Sons, New York, pp 177–192

    Google Scholar 

  • Hoflich G, Kasper S, Hufnagel A, Ruhrmann S, Moller HJ (1993) Application of transcranial magnetic stimulation in treatment of drug-resistant major depression — a report of two cases. Human Psychopharmacol 8: 361–365

    Google Scholar 

  • Hosoda K, Duman RS (1993) Regulation of beta 1-adrenergic receptor mRNA and ligand binding by antidepressant treatments and norepinephrine depletion in rat frontal cortex. J Neurochem 60: 1335–1343

    PubMed  Google Scholar 

  • Kellar KJ, Cascio CS, Bergstrom DA, Butler JA, Iadarola P (1981) Electroconvulsive shock and reserpine: effects on beta-adrenergic receptors in rat brain. J Neurochem 37: 830–836

    PubMed  Google Scholar 

  • Little KY, Clark TB, Ranc J, Duncan GE (1993) Beta-adrenergic receptor binding in frontal cortex from suicide victims. Biol Psychiatry 34: 596–605

    PubMed  Google Scholar 

  • Molina VA, Volosin M, Cancela L, Keller E, Murua VS, Basso AM (1990) Effect of chronic variable stress on monoamine receptors: influence of imipramine aministration. Pharmacol Biochem Behav 35: 335–340

    PubMed  Google Scholar 

  • Nakamura T (1992) Effect of forced-running stress on beta-adrenergic receptors in rat brain regions and liver. Jpn J Psychiatry Neurol 46: 187–195

    PubMed  Google Scholar 

  • Nomura S, Watanabe M, Ukei N, Nakazawa T (1981) Stress and beta-adrenergic receptor binding in the rat's brain. Brain Res 224: 199–203

    PubMed  Google Scholar 

  • Paul IA, Duncan GE, Powell KR, Mueller RA, Hong JS, Breese GRJ (1988) Regionally specific neural adaptation of beta adrenergic and 5-hydroxytryptamine receptors after antidepressant administration in the forced swim test and after chronic antidepressant drug treatment. Pharmacol Exp Ther 246: 956–962

    Google Scholar 

  • Pandey SC, Ren X, Sagen J, Pandey GN (1995) Beta-adrenergic receptor subtypes in stress-induced behavioral depression. Pharmacol Biochem Behav 51: 339–344

    PubMed  Google Scholar 

  • Pascual-Leone A, Rubio B, Pallardo F, Catala DM (1996) Beneficial effect of rapid-rate transcranial magnetic stimulation of the left dorsolateral prefrontal cortex in drug-resistant depression. Lancet 348: 233–237

    PubMed  Google Scholar 

  • Stanford C, Fillenz M, Ryan E (1984) The effect of repeated mild stress on cerebral cortical adrenoceptors and noradrenaline synthesis in the rat. Neurosci Lett 45: 163–167

    PubMed  Google Scholar 

  • Stockmeier CA, Meltzer HY (1991) Beta-adrenergic receptor binding in frontal cortex of suicide victims. Biol Psychiatry 29: 183–191

    PubMed  Google Scholar 

  • Stone EA (1983) Reduction in cortical beta adrenergic receptor density after chronic intermittent food deprivation. Neurosci Lett 40: 33–37

    PubMed  Google Scholar 

  • Takita M, Kigoshi S, Muramatsu I (1993) Effects of bevantolol HCl on immobilization stress-induced hypertension and central beta-adrenoceptors in rats. Pharmacol Biochem Behav 45: 623–627

    PubMed  Google Scholar 

  • Tejani Butt SM, Pare WP, Yang J (1994) Effect of repeated novel Stressors on depressive behavior and brain norepinephrine receptor system in Sprague-Dawley and Wistar Kyoto (WKY) rats. Brain Res 649: 27–35

    PubMed  Google Scholar 

  • Weissman JD, Eostein CM, Davey KR (1992) Magnetic brain stimulation and brain size: relevance to animal studies. Electroencephalogr Clin Neurophysiol 85: 215–219

    PubMed  Google Scholar 

  • Yamanaka K, Muramatsu I, Kigoshi S (1987) Effect of chronic nicotine treatment against repeated immobilization stress. Pharmacol Biochem Behav 26: 259–63

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleischmann, A., Sternheim, A., Etgen, A.M. et al. Transcranial magnetic stimulation downregulates β-adrenoreceptors in rat cortex. J. Neural Transmission 103, 1361–1366 (1996). https://doi.org/10.1007/BF01271196

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01271196

Keywords

Navigation