Skip to main content
Log in

Ex vivo inhibitory effect of the 5-HT uptake blocker citalopram on 5-HT synthesis

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

Serotonin (5-hydroxytryptamine, 5-HT) synthesis was determined in vivo by measuring the accumulation of 5-hydroxytryptophan (5-HTP) in rat frontal cortex after inhibition of aromatic amino acid decarboxylase by administration of m-hydroxybenzylhydrazine (NSD 1015) (100 mg/kg, i.p.). The selective 5-HT reuptake inhibitor, citalopram, the 5-HT1a agonists, (±)8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT), ipsapirone, gepirone and the 5-HT1a/b agonist, 7-trifluoromethyl-4(4-methyl-1-piperazinylpyrolo[1,2-a]-quinoxaline (CGS 12066B), the 5-HT1a/b ligands and β-adrenoceptor antagonists, (±)pindolol and (±)alprenolol, and the non-selective 5-HT ligands, m-chlorophenylpiperazine (mCPP) and metergoline, all inhibited the synthesis of 5-HT. The 5-HT1a /5-HT2 antagonist, spiperone, alone, had no effect on basal 5-HT synthesis, however it attenuated the effect of 8-OH-DPAT by 56% and CGS 12066B by 39% but only barely that of citalopram by 17%. The selective 5-HT1a antagonist, WAY 100635, which did not modify by itself 5-HT synthesis, had no effect on citalopram-induced reduction of 5-HT synthesis. Neither the 5-HT2 agonist, (±)1-(2,5-dimethoxy-4-indophenyl)-2-aminopropane (DOI) nor the 5-HT2 antagonist, ritanserin, had any effect on the synthesis of 5-HT. In addition, ritanserin did not modify the inhibitory effect of citalopram. Methiothepin was the only compound to increase 5-HT synthesis. These results suggest that the effect of citalopram on the synthesis of 5-HT is not mediated by 5-HT1a or 5-HT2 receptors and that other receptors may be involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arborelius L, Backhand Höök B, Hacksell U, Svensson TH (1994) The 5-HT1a receptor antagonist (S)-UH-301 blocks the (R)-8-OH-DPAT-induced inhibition of serotonergic dorsal raphe cell firing in the rat. J Neural Transm 96: 179–186

    Google Scholar 

  • Artigas F (1993) 5-HT and antidepressants: new views from microdialysis studies. Trends Pharmacol Sci 14: 262

    PubMed  Google Scholar 

  • Artigas F, Perez V, Alvarez E (1994) Pindolol induces a rapid improvement of depressed patients treated with serotonin reuptake inhibitors. Arch Gen Psychiatry 51: 248–251

    PubMed  Google Scholar 

  • Briley M, Moret C (1988) Modulation of 5-HT autoreceptors probably contributes to the antidepressant action of 5-HT uptake blockers. In: Briley M, Fillion G (eds) New concepts in depression. Macmillan Press, London, pp 15–24

    Google Scholar 

  • Briley M, Moret C (1993) Neurobiological mechanisms involved in antidepressant therapies. Clin Neuropharmacol 16: 387–400

    PubMed  Google Scholar 

  • Briley M, Chopin P, Marien M, Moret C (1996) Functional neuropharmacology of compounds acting at 5-HT1b/d receptors. In: Baumgarten HG, Göthert M (eds) Handbook of experimental pharmacology. Serotoninergic neurons and 5-HT receptors in the CNS. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Carlsson A (1977) Effects of antidepressant agents on monoamine synthesis. In: 13th Symposium Medicum Hoechst, Depressive Disorders. Rome, pp 8–12

  • Carlsson A, Lindqvist M (1978) Effects of antidepressant agents on the synthesis of brain monoamines. J Neural Transm 43: 73–91

    PubMed  Google Scholar 

  • Chaput Y, De Montigny C, Blier P (1986) Effects of a selective 5-HT reuptake blocker, citalopram, on the sensitivity of 5-HT autoreceptors: electrophysiological studies in the rat brain. Naunyn Schmiedebergs Arch Pharmacol 333: 342–348

    PubMed  Google Scholar 

  • Chopin P, Moret C, Briley M (1994) Neuropharmacology of 5-hydroxytryptamine1b/d receptor ligands. Pharmacol Ther 62: 385–405

    PubMed  Google Scholar 

  • Corrodi H, Fuxe K (1969) Decreased turnover in central 5-HT nerve terminals induced by antidepressant drugs of the imipramine type. Eur J Pharmacol 7: 56–59

    PubMed  Google Scholar 

  • Davidson C, Stamford JA (1995) Evidence that 5-hydroxytryptamine release in rat dorsal raphe nucleus is controlled by 5-HT1a , 5-HT1b and 5-HT1d autoreceptors. Br J Pharmacol 114: 1107–1109

    PubMed  Google Scholar 

  • Fernstrom MH, Massoudi MS, Fernstrom JD (1990) Effect of 8-hydroxy-2-(di-n-propylamino)-tetralin on the tryptophan-induced increase in 5-hydroxytryptophan accumulation in rat brain. Life Sci 47: 283–289

    PubMed  Google Scholar 

  • Fletcher A, Forster EA, Bill DJ, Brown G, Cliffe IA, Hartley JE, Jones DE, McLenachan A, Stanhope KJ, Critchley DJP, Childs KJ, Middlefell VC, Lanfumey L, Corradetti R, Laporte A-M, Gozlan H, Hamon M, Dourish CT (1996) Electrophysiological, biochemical, neurohormonal and behavioural studies with WAY-100635, a potent, selective and silent 5-HT1a receptor antagonist. Behav Brain Res 73: 337–353

    PubMed  Google Scholar 

  • Göthert M (1980) Serotonin-receptor-mediated modulation of Ca2+-dependent 5-hydroxytryptamine release from neurones of the rat brain cortex. Naunyn Schmiedebergs Arch Pharmacol 314: 223–230

    PubMed  Google Scholar 

  • Göthert M (1982) Modulation of serotonin release in the brain via presynaptic receptors. Trends Pharmacol Sci 3: 437–440

    Google Scholar 

  • Hamon M, Cossery JM, Spampinato U, Gozlan H (1986) Are there selective ligands for 5-HT1a and 5-HT1b receptor binding sites in brain? Trends Pharmacol Sci 7: 336–338

    Google Scholar 

  • Hamon M, Fattaccini C-M, Adrien J, Gallissot M-C, Martin P, Gozlan H (1988) Alterations of central serotonin and doparnine turnover in rats treated with ipsapirone and other 5-hydroxytryptamine1a agonists with potential anxiolytic properties. J Pharmacol Exp Ther 246: 745–752

    PubMed  Google Scholar 

  • Hamon M, Lanfumey L, El-Mestikawy S, Boni C, Miquel M-C, Bolanos F, Schechter L, Gozlan H (1990) The main features of central 5-HT, receptors. Neuropsychopharmacology 3: 349–360

    PubMed  Google Scholar 

  • Hjorth S (1993) Serotonin 5-HT1a autoreceptor blockade potentiates the ability of the 5-HT reuptake inhibitor citalopram to increase nerve terminal output of 5-HT in vivo: a microdialysis study. J Neurochem 60: 776–779

    PubMed  Google Scholar 

  • Hjorth S, Carlsson A (1985) (−)Pindolol stereospecifically inhibits rat brain serotonin (5-HT) synthesis. Neuropharmacology 24: 1143–1146

    PubMed  Google Scholar 

  • Hjorth S, Magnusson T (1988) The 5-HT1a receptor agonist, 8-OH-DPAT, preferentially activates cell body 5-HT autoreceptors in rat brain in vivo. Naunyn Schmiedebergs Arch Pharmacol 338: 463–471

    PubMed  Google Scholar 

  • Hjorth S, Carlsson A, Lindberg P, Sanchez D, Wikström H, Arvidsson L-E, Hacksell U, Nilsson JLG (1982) 8-Hydroxy-2-(di-n-propylamino)-tetralin, 8-OH-DPAT, a potent and selective simplified ergot congener with central 5-HT-receptor stimulating activity. J Neural Transm 55: 169–188

    Google Scholar 

  • Hjorth S, Bengtsson HJ, Milano S, Lundberg JF, Sharp T (1995a) Studies on the role of 5-HT1a autoreceptors and α1-adrenoceptors in the inhibition of 5-HT release. I. BMY7378 and prazosin. Neuropharmacology 34: 615–620

    PubMed  Google Scholar 

  • Hjorth S, Suchowski CS, Galloway MP (1995b) Evidence for 5-HT autoreceptormediated, nerve impulse-independent, control of 5-HT synthesis in the rat brain. Synapse 19: 170–176

    PubMed  Google Scholar 

  • Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PPA (1994) International union of pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev 46: 157–203

    PubMed  Google Scholar 

  • Humphrey PPA, Feniuk W, Perren MJ, Beresford UM, Skingle M (1990) Serotonin and migraine. Ann NY Acad Sci 600: 587–600

    PubMed  Google Scholar 

  • Hutson PH, Sarna GS, O'Connell MT, Curzon G (1989) Hippocampal 5-HT synthesis and release in vivo is decreased by infusion of 8-OH-DPAT into the nucleus raphe dorsalis. Neurosci Lett 100: 276–280

    PubMed  Google Scholar 

  • Invernizzi R, Carli M, Di Clemente A, Samanin R (1991) Administration of 8-hydroxy-2-(di-n-propylamino)tetralin in raphe nuclei dorsalis and medianus reduces serotonin synthesis in the rat brain: differences in potency and regional sensitivity. J Neurochem 56: 243–247

    PubMed  Google Scholar 

  • Jolas T, Haj-Dahmane S, Lanfumey L, Fattaccini C-M, Kidd EJ, Adrien J, Gozlan H, Guardiola-Lemaitre B, Hamon M (1993) (−)Tertatolol is a potent antagonist at pre- and postsynaptic serotonin 5-HT1a receptors in the rat brain. Naunyn Schmiedebergs Arch Pharmacol 347: 453–463

    PubMed  Google Scholar 

  • Middlemiss DN (1988) Autoreceptors regulating serotonin release. In: Sanders-Bush E (ed) The serotonin receptors. Humana Press, Clifton, pp 201–224

    Google Scholar 

  • Middlemiss DN, Fozard JR (1983) 8-Hydroxy-2-(di-n-propylamino)tetralin discriminates between subtypes of the 5-HT, recognition site. Eur J Pharmacol 90: 151–155

    PubMed  Google Scholar 

  • Moore NA, Rees G, Sanger G, Perrett L (1993) 5-HT1a -mediated lower lip retraction: effects of 5-HT1a agonists and antagonists. Pharmacol Biochem Behav 46: 141–143

    PubMed  Google Scholar 

  • Moret C (1985) Pharmacology of the serotonin autoreceptor. In: Green AR (ed) Neuropharmacology of serotonin. Oxford University Press, Oxford, pp 21–49

    Google Scholar 

  • Moret C, Briley M (1988) Sensitivity of the response of 5-HT autoreceptors to drugs modifying synaptic availability of 5-HT. Neuropharmacology 27: 43–49

    PubMed  Google Scholar 

  • Moret C, Briley M (1992) Effect of antidepressant drugs on monoamine synthesis in brain in vivo. Neuropharmacology 31: 679–684

    PubMed  Google Scholar 

  • Moret C, Briley M (1993a) Which 5-HT receptors are involved in the modulation of 5-HT synthesis by the 5-HT uptake blocker, citalopram? Br J Pharmacol 108: 96P

  • Moret C, Briley M (1993b) The unique effect of methiothepin on the terminal serotonin autoreceptor in the rat hypothalamus could be an example of inverse agonism. J Psychopharmacol 7: 331–337

    Google Scholar 

  • Moret C, Briley M (1996) Effects of acute and repeated administration of citalopram on extracellular levels of serotonin in rat brain. Eur J Pharmacol 295: 189–197

    PubMed  Google Scholar 

  • Moret C, Charvéron M, Finberg JPM, Couzinier J-P, Briley M (1985) Biochemical profile of midalcipran (F 2207), 1-phenyl-1-diethyl-aminocarbonyl-2-aminornethylcyclopropane (Z) hydrochloride, a potential fourth generation antidepressant drug. Neuropharmacology 24: 1211–1219

    PubMed  Google Scholar 

  • Neale RF, Fallen SL, Boyar WC, Wasley JWF, Martin LL, Stone GA, Glaeser BS, Sinton CM, Williams M (1987) Biochemical and pharmacological characterization of CGS 12066B, a selective serotonin-lB agonist. Eur J Pharmacol 136: 1–9

    PubMed  Google Scholar 

  • Nybäck HV, Walters JR, Aghajanian GK, Roth RH (1975) Tricyclic antidepressants: effects on the firing rate of brain noradrenergic neurons. Eur J Pharmacol 32: 302–312

    PubMed  Google Scholar 

  • Pauwels PJ, Colpaert FC (1995) The 5-HT1d receptor antagonist GR 127,935 is an agonist at cloned human 5-HT1dα receptor sites. Neuropharmacology 34: 235–237

    PubMed  Google Scholar 

  • Pettibone DJ, Pfleuger AB (1984) Effects of methiothepin and lysergic acid diethylamide on serotonin release in vitro and serotonin synthesis in vivo: possible relation to serotonin autoreceptor function. J Neurochem 43: 83–90

    PubMed  Google Scholar 

  • Pineyro G, Blier P (1996) Regulation of 5-hydroxytryptamine release from rat midbrain raphe nuclei by 5-hydroxytryptamine1d receptors: effect of tetrodotoxin, G protein inactivation and long-term antidepressant administration. J Pharmacol Exp Ther 276: 697–707

    PubMed  Google Scholar 

  • Pineyro G, de Montigny C, Blier P (1995) 5-HT1d Receptors regulate 5-HT release in the rat raphe nuclei. In vivo voltammetry and in vitro superfusion studies. Neuropsychopharmacology 13: 249–260

    PubMed  Google Scholar 

  • Rigdon GC, Wang CM (1991) Serotonin uptake blockers inhibit the firing of presumed serotonergic dorsal raphe neurons in vitro. Drug Dev Res 22: 135–140

    Google Scholar 

  • Roberts C, Thorn L, Price GW, Middlemiss DN, Jones BJ (1994) Effect of the selective 5-HT1d receptor antagonist, GR 127935, on in vivo 5-HT release, synthesis and turnover in the guinea-pig frontal cortex. Br J Pharmacol 112: 489P

  • Schechter LE, Bolanos FJ, Gozlan H, Lanfumey L, Haj-Dahmane S, Laporte A-M, Fattaccini C-M, Hamon M (1990) Alterations of central serotoninergic and dopaminergic neurotransmission in rats chronically treated with ipsapirone: biochemical and electrophysiological studies. J Pharmacol Exp Ther 255: 1335–1347

    PubMed  Google Scholar 

  • Schubert J, Nybäck H, Sedvall G (1970) Effect of antidepressant drugs on accumulation and disappearance of monoamines formed in vivo from labelled precursors in mouse brain. J Pharm Pharmacol 22: 136–139

    PubMed  Google Scholar 

  • Sharp T, Bramwell SR, Clark D, Grahame-Smith DG (1989) In vivo measurement of brain extracellular 5-hydroxytryptamine using microdialysis; changes in relation to 5-hydroxytryptaminergic neuronal activity. J Neurochem 53: 234–240

    PubMed  Google Scholar 

  • Sharp T, McQuade R, Bramwell S, Hjorth S (1993) Effect of acute and repeated administration of 5-HT1a receptor agonists on 5-HT release in rat brain in vivo. Naunyn Schmiedebergs Arch Pharmacol 348: 339–346

    PubMed  Google Scholar 

  • Sheard MH, Zolovick A, Aghajanian GK (1972) Raphe neurons: effect of tricyclic antidepressant drugs. Brain Res 43: 690–694

    PubMed  Google Scholar 

  • Sprouse JS, Aghajanian GK (1987) Electrophysiological responses of serotonergic dorsal raphe neurons to 5-HT1a and 5-HT1b agonists. Synapse 1: 3–9

    PubMed  Google Scholar 

  • Sprouse JS, Aghajanian GK (1988) Responses of hippocampal pyramidal cells to putative serotonin 5-HT1a and 5-HT1b agonists: a comparative study with dorsal raphe neurons. Neuropharmacology 27: 707–715

    PubMed  Google Scholar 

  • Starkey SJ, Skingle M (1994) 5-HT1d as well as 5-HT1a autoreceptors modulate 5-HT release in the guinea-pig dorsal raphe nucleus. Neuropharmacology 33: 393–402

    PubMed  Google Scholar 

  • Svensson TH (1978) Attenuated feed-back inhibition of brain serotonin synthesis following chronic administration of imipramine. Naunyn Schmiedebergs Arch Pharmacol 302: 115–118

    PubMed  Google Scholar 

  • Zgombick JM, Schechter LE, Adham N, Kucharewicz SA, Weinshank RL, Branchek TA (1996) Pharmacological characterizations of recombinant human 5-HT1dα and 5-HT1dβ receptor subtypes coupled to adenylate cyclase inhibition in clonal cell lines: apparent differences in drug intrinsic efficacies between human 5-HT1d subtypes. Naunyn Schmiedebergs Arch Pharmacol 354: 226–236

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moret, C., Briley, M. Ex vivo inhibitory effect of the 5-HT uptake blocker citalopram on 5-HT synthesis. J. Neural Transmission 104, 147–160 (1997). https://doi.org/10.1007/BF01273177

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01273177

Keywords

Navigation