Skip to main content
Log in

Effects of local and repeated systemic administration of (−)nicotine on extracellular levels of acetylcholine, norepinephrine, dopamine, and serotonin in rat cortex

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Systemically administered (−)nicotine (0.2–1.2 mg/kg, s.c.) significantly increased the release of acetylcholine (ACh), norepinephrine (NE) and dopamine (DA) in rat cortex. The lowest dose of (−)nicotine examined (0.2 mg/kg, s.c) also significantly elevated extracellular serotonin (5-HT) levels, and the maximal increases of extracellular ACh (122% at 90 min post injection) and DA levels (249% at 120 min post-injection) were observed following this dose. In contrast, the maximal increase of NE release (157% at 30 min post-injection) was observed following the highest dose of (−)nicotine injected (1.2 mg/kg, s.c.). This higher dose consistently produced generalized seizures. Repeating the (−)nicotine (0.58 mg/kg, s.c.) injection four hours after the first administration significantly elevated extracellular NE levels and also appeared to increase DA and CCh release. In addition, extracellular ACh and DA levels increased significantly in the dialysate after (−)nicotine was administered directly to the neocortex through the microdialysis probe membrane. Norepinephrine levels appeared to be elevated in the cortex following local administration as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Levin, E. D., and Rosecrans, J. A. 1994. Promise of nicotinicbased therapeutic treatments. Drug Dev. Res. 31:1–2.

    Google Scholar 

  2. Williams, M., Sullivan, P., and Arneric, S. P. 1994. Neuronal nicotinic acetylcholine receptors. DN&P 7(4):205–223.

    Google Scholar 

  3. Cregan, E., Ordy, J. M., Palmer, E., Blosser, J., Wengenack, T., and Thomas, G. 1989. Spatial working memory enhancement by nicotine of aged Long Evans rats in the T-Maze. Soc. Neurosci. Abst. 15:731.

    Google Scholar 

  4. Buccafusco, J. J., and Jackson, W. J. 1991. Beneficial effects of nicotine administered prior to a delayed matching-to-sample task in young and aged monkeys. Neurobiol. Aging 12:233–238.

    Google Scholar 

  5. Giacobini, E., DeSarno, P., McIlhany, M., Clark, B. 1988. The cholinergic receptor system in the frontal lobe of Alzheimer patients. Pages H25:367–378,in Clementi, F., Gotti, C., and Sher, E. (eds.), Nicotinic acetylcholine receptors in the nervous system. NATO ASI Series H. Springer-Verlag, Berlin.

    Google Scholar 

  6. Schroder, H., Giacobini, E., Struble, R. G., Zilles, K., and Maelicke, A. 1991. Nicotinic cholinoceptive neurons of the frontal cortex are reduced in Alzheimer's Disease Neurobiology of Aging 12:259–262.

    Google Scholar 

  7. Schroder, H., Wevers, A., Birtsch, C., Ghobrial, M., Giacobini, E., and Maelicke, A. 1994. Nicotinic receptors in human brain. Pages 181–185,in Giacobini, E., and Becker, R. (eds), Alzheimer Disease: Therapeutic Strategies, Birkhauser Boston, Cambridge.

    Google Scholar 

  8. Newhouse, P. A., Sunderland, T., Thompson, K., Tariot, P. N., Weingartner, H., Mueller, E. R., Cohen, R. M., and Murphy, D. L. 1986. Intravenous nicotine in a patient with Alzheimer's Disease. Am. J. Psychiat. 143:1494–1495.

    Google Scholar 

  9. Newhouse, P. A., Sunderland, T., Tariot, P. N., Blumhardt, C. L., Weingartner, H., Mellow, A., and Murphy, D. L. 1988. Intravenous nicotine in Alzheimer's Disease: a pilot study. Psychopharmacology 95:171–175.

    Google Scholar 

  10. Newhouse, P., Sunderland, T., Narang, P., Mellow, A. M., Fertig, J. B., Lawlor, B. A., and Murphy, D. L. 1990. Neuroendocrine, physiologic, and behavioral responses following intravenous nicotine in non-smoking healthy volunteers and patients with Alzheimer's disease. Psychoneuroendocrinology 15:471–484.

    Google Scholar 

  11. Sahakian, B., Jones, G., Levy, R., Gray, J., and Warburton, D. 1989. The effects of nicotine on attention, information processing, and short-term memory in patients with dementia of Alzheimer type. Brit. J. Psychiat. 154:797–800.

    Google Scholar 

  12. Beninger, R. J., Wirsching, B. A., Jhamandas, K., and Boegman, R. J. 1989. Animal studies of brain acetylcholine and memory. Arch. Gerontol. Geriatr. Suppl. 1:71–89.

    Google Scholar 

  13. Giacobini, E. 1990. The cholinergic system in Alzheimer's disease. Vol. 84, Pages 321–332,in Aquilonius, S-M., and Gillberg, P. G. (eds.), Progress In Brain Research, Elsevier, Amsterdam.

    Google Scholar 

  14. Levin, E. D., and Rose, J. E. 1991. Interactive effects of D1 and D2 agonists with scopolamine on radial-arm maze performance. Pharm. Biochem. Behav. 38:243–246.

    Google Scholar 

  15. Levin, E. D., and Eisner, B. 1994. Nicotine interactions with dopamine agonists: effects on working memory function. Drug Dev. Res. 31:32–37.

    Google Scholar 

  16. Riekkinen, M., Sirvio, J., and Riekkinen, Jr., P. 1993. Pharmacological consequences of nicotinergic plus serotonergic manipulations. Brain Research 622:139–146.

    Google Scholar 

  17. Summers, K. L., Cuadra, G., Naritoku, D., and Giacobini, E. 1994. Effects of nicotine on levels of acetylcholine and biogenic amines in rat cortex. Drug Dev. Res. 31:108–119.

    Google Scholar 

  18. Toide, K., and Arima, T. 1989. Effects of cholinergic drugs on extracellular levels of acetylcholine and choline in rat cortex, hippocampus and striatum studied by brain dialysis. Eur. J. Pharmacol. 173:133–141.

    Google Scholar 

  19. Toth, E., Sershen, H., Hashim, A., Vizi, E. S., and Lajtha, A. 1992. Effect of nicotine on extracellular levels of neurotransmitters assessed by microdialysis in various brain regions: Role of glutamic acid. Neurochem. Res. 17:265–271.

    Google Scholar 

  20. Vidal, C. 1994. Nicotinic potentiation of glutamatergic synapses in the prefrontal cortex: New insight into the analysis of the role of nicotinic receptors in cognitive functions. Drug Dev. Res. 31: 120–126.

    Google Scholar 

  21. Katz, B., and Thesleff, A. 1957. A study of the desensitization produced by acetylcholine of the motor end plate. J. Physiol-London 138:63–80.

    Google Scholar 

  22. Paxinos, G., and Watson, C. 1982. The Rat Brain in Stereotaxic Coordinates. Academic Press, Sydney.

    Google Scholar 

  23. Greaney, M. D., Marshall, D. L., Bailey, B. A., and Acworth, I. N. 1993. Improved method for the routine analysis of acetylcholine release in vivo: quantitation in the presence and absence of esterase inhibitor. J. Chromatography 622:125–135.

    Google Scholar 

  24. Levin, E. D., Christopher, N. C., Briggs, S. J., and Rose, J. E. 1993. Chronic nicotine reverses working memory deficits caused by lesions of the fimbria or medial basal ocortical projection. Cognitive Brain Research 137–143.

  25. Pratt, J. A., Stolerman, I. P., Garcha, H. S., Giardini, V., and Feyerabend, C. 1983 Discriminative stimulus properties of nicotine: further evidence for mediation at a cholinergic receptor. Psychopharmacology 81:54–60.

    Google Scholar 

  26. Messamore, E., Ogane, N., and Giacobini, E. 1993. Cholinesterase inhibitor effects on extracellular acetylcholine in rat striatum. Neuropharmacology 32:291–296.

    Google Scholar 

  27. Lena, C., and Changeux, J. P. 1993. Allosteric modulations of the nicotinic acetylcholine receptor. Trends in Pharmacological Sciences 16(5):181–185.

    Google Scholar 

  28. Pereira, E. F. R., Reinhardt-Maelicke, S., Schrattenholz, A., Maelicke, A., and Albuquerque, E. X. 1993. Identification and functional characterization of a new agonist site on nicotinic acetylcholine receptors of cultured hippocampal neurons. J. Pharmacol. Exp. Ther. 265:1474–1491.

    Google Scholar 

  29. Shaw, K. P., Aracava, Y., Akaike, A., Daly, J. W., Rickett, D. L., and Albuquerque, E. X. 1985. The reversible cholinesterase inhibitor physostigmine has channel-blocking and agonist effects on the acetylcholine receptor ion channel complex. Mol. Pharmacol. 28:527–538.

    Google Scholar 

  30. Clarke, P. B. S., Reuben, M., El-Bizri, H. 1994. Blockade of nicotinic responses by physostigmine, tacrine and other cholinesterase inhibitors in rat striatum. Brit. J. Pharmacol. 111:695–702.

    Google Scholar 

  31. Shimohama, S., Taniguchi, T., Fujiwara, M., and Kameyama, M. 1985. Biochemical characterization of the nicotinic cholinergic receptor in human brain: Binding of [3H]-nicotine. J. Neurochem. 45:604–610.

    Google Scholar 

  32. Egan, T. M., and North, R. A. 1986. Actions of acetylcholine and nicotine on rat locus coeruleus neurons in vitro. Neuroscience 19: 565–571.

    Google Scholar 

  33. Engberg, G., and Hajos, M. 1994. Nicotine-induced activation of locus coeruleus neurons—an analysis of peripheral versus central induction. Naunyn-Schmiedeberg Arch. Pharmacol. 394:443–446.

    Google Scholar 

  34. Deutch, A. Y., Holliday, J., Roth, R. H., Chun, L. L. Y., and Hawrot, E. 1987. Immunohistochemical localization of a neuronal nicotinic acetylcholine receptor in mammalian brain. Proc. Natl. Acad. Sci. USA 84:8697–8701.

    Google Scholar 

  35. Schwartz, R. D., Lehman, J., and Kellar, K. J. 1985. Presynaptic nicotinic cholinergic receptors labeled by [3H]acetylcholine on catecholamine and serotonin axons in brain. J. Neurochem. 42: 1495–1498.

    Google Scholar 

  36. Bravo, H., and Karten, H. J. 1992. Pyramidal neurons of the rat cerebral cortex, immunoreactive to nicotinic acetylcholine receptors, project mainly to subcortical targets. J. Comp. Neurology 320:62–68.

    Google Scholar 

  37. Swanson, L. W., Simmons, D. M., Whiting, P. J., and Lindstrom, J. 1987. Immunohistochemical localization of neuronal nicotinic receptors in the rodent central nervous system. J. Neurosci. 7(10): 3334–3348.

    Google Scholar 

  38. Wada, K., Ballivet, M., Boulter, J., Connolly, J., Wada, E., Deneris, E. S., Swanson, L. W., Heinemann, S., and Patrick, J. 1988. Functional expression of a new pharmacological subtype of brain nicotinic acetylcholine receptor. Science 240:330–334.

    Google Scholar 

  39. Prusky, G. T., Arbuckle J. M., and Cynader, H. S. 1988. Transient concordant distributions of nicotinic receptors and acetylcholinesterase activity in infant rat visual cortex. Brain Res. 39:154–159.

    Google Scholar 

  40. Sahin, M., Bowen, W. D., and Donahue, J. P. 1992. Location of nicotine and muscarinic cholinergic and mu-opiate receptors in rat cerebral neocortex: Evidence from thalamic and cortical lesions. Brain Res. 579:135–147.

    Google Scholar 

  41. Vidal, C., and Changeux, J. P. 1993. Nicotinic and muscarinic modulations of excitatory synaptic transmission in the rat prefrontal cortex in vitro. Neuroscience 56:23–32.

    Google Scholar 

  42. Le Moal, M., and Simon, H. 1991. Mesolimbic dopaminergic network: functional and regulatory roles. Physiol. Rev. 71:155–234.

    Google Scholar 

  43. Fillenz, M. 1990. Noradrenergic neurones. Cambridge University Press, Cambridge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Summers, K.L., Giacobini, E. Effects of local and repeated systemic administration of (−)nicotine on extracellular levels of acetylcholine, norepinephrine, dopamine, and serotonin in rat cortex. Neurochem Res 20, 753–759 (1995). https://doi.org/10.1007/BF01705545

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01705545

Key Words

Navigation