Skip to main content
Log in

Amiloride-blockable sodium currents in isolated taste receptor cells

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Isolated taste receptor cells from the frog tongue were investigated under whole-cell patch-clamp conditions. With the cytosolic potential head at −80 mV, more than 50% of the cells had a stationary inward Na current of 10 to 700 pA in Ringer's solution. This current was in some cells partially, in others completely, blockable by low concentrations of amiloride. With 110mm Na in the external and 10mm Na in the internal solution, the inhibition constant of amiloride was (at −80 mV) near 0.3 μm. In some cells the amiloride-sensitive conductance was Na specific; in others it passed both Na and K. The Na/K selectivity (estimated from reversal potentials) varied between 1 and 100. The blockability bysmall concentrations of amiloride resembled that of channels found in some Na-absorbing epithelia, but the channels of taste cells showed a surprisingly large range of ionic specificities. Receptor cells, whichin situ express these channels in their apical membrane, may be competent to detect the taste quality “salty.” The same cells also express TTX-blockable voltage-gated Na channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akaike, N., Noma, A., Sato, M. 1976. Electrical responses of frog taste cells to chemical stimuli.J. Physiol. (London) 254:87–107

    Google Scholar 

  2. Asher, C., Cragoe, E.J., Jr., Garty, H. 1987. Effects of amiloride on Na+ transport in toad bladder membrane vesicles.J. Biol. Chem. 262:8566–8573

    PubMed  Google Scholar 

  3. Avenet, P., Hofmann, F., Lindemann, B. 1988. Transduction in taste-receptor cells requires cAMP-dependent protein kinase.Nature (London) 331:351–354

    Google Scholar 

  4. Avenet, P., Lindemann, B. 1987. Action potentials in epithelial taste receptor cells induced by mucosal Calcium.J. Membrane Biol. 95:265–269

    Google Scholar 

  5. Avenet, P., Lindemann, B. 1987. Patch-clamp study of siolated taste receptor cells of the frog.J. Membrane Biol. 97:223–240

    Google Scholar 

  6. Benos, D.J. 1982. Amiloride: A molecular probe of sodium transport in tissues and cells.Am. J. Physiol. 242:C131-C145

    Google Scholar 

  7. Bjorkman, D.J., Allan, C.H., Hagen, S.J., Trier, J.S. 1986. Structural features of absorptive cell and microvillus membrane preparations from rat small intestine.Gastroenterology 91:1401–1414

    PubMed  Google Scholar 

  8. Brand, J.G., Teeter, J.H., Silver, W.L. 1985. Inhibition by chorda tympani responses evoked by monovalent salts.Brain Res. 334:207–214

    PubMed  Google Scholar 

  9. DeSimone, J.A., Ferrell, F. 1985. Analysis of amiloride inhibition of chorda tympani taste response of rat to NaCl.Am. J. Physiol. 249:R52-R61

    PubMed  Google Scholar 

  10. DeSimone, J.A., Heck, G.L., DeSimone, S.K. 1981. Active ion transport in dog tongue: A possible role in taste.Science 214:1039–1041

    PubMed  Google Scholar 

  11. DeSimone, J.A., Heck, G.L., Mierson, S., DeSimone, S.K. 1984. The active ion transport properties of canine lingual epithelia in vitro. Implications for gustatory transduction.J. Gen. Physiol. 83:633–656

    PubMed  Google Scholar 

  12. Dragsten, P.R., Blumenthal, R., Handler, J.S. 1981. Membrane asymmetry in epithelia: Is the tight junction a barrier to diffusion in the plasma membrane?Nature (London) 294:718–722

    Google Scholar 

  13. Formaker, B.K., Hill, D.L. 1986. The suppressed response of NaCl following amiloride.IX Int. Symp. Olfact. Taste Abstr. Snowmass Village, Colo. p. 95

  14. Frelin, C., Vigne, P., Barbry, P., Lazdunski, M. 1987. Molecular properties of amiloride action and of its Na transporting targets.Kidney Int. 32:785–793

    PubMed  Google Scholar 

  15. Frings, S., Lindemann, B. 1988. Odorant response of isolated olfactory receptor cells is blocked by amiloride.J. Membrane Biol. 105:233–243

    Google Scholar 

  16. Fujimoto, T., Ogawa, K. 1983. Cell membrane polarity in dissociated frog urinary bladder epithelial cells.J. Histochem. Cytochem. 31:131–138

    PubMed  Google Scholar 

  17. Garty, H., Benos, D.J. 1988. Characteristics and regulatory mechanisms of the amiloride-blockable Na+ channel.Physiol. Rev. 68:309–337

    PubMed  Google Scholar 

  18. Garty, H., Edelman, I.S. 1983. Amiloride-sensitive trypsinization of apical sodium channels: Analysis of hormonal regulation of sodium transport in toad bladder.J. Gen. Physiol. 81:785–803

    PubMed  Google Scholar 

  19. Goldman, D.E. 1943. Potential, impedance and rectification in membranes.J. Gen. Physiol. 27:37–60

    Article  Google Scholar 

  20. Hamill, O.P., Marty, A., Neher, E., Sakmann, B., Sigworth, F. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches.Pfluegers Arch. Ges. Physiol. 391:85–100

    Google Scholar 

  21. Hamilton, K.L., Eaton, D.C. 1985. Single-channel recordings from amiloride-sensitive epithelial sodium channel.Am. J. Physiol. 249:C200-C207

    PubMed  Google Scholar 

  22. Heck, G.L., Mierson, S., DeSimone, J.A. 1984. Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway.Science 223:403–405

    Google Scholar 

  23. Heck, G.L., Welter, M.E., DeSimone, J.A. 1985. Simultaneous recordings of the transepithelial lingual potential and integrated neural response of the rat.Chem. Senses 10:427–428

    Google Scholar 

  24. Herness, S. 1986. Effect of amiloride on iontophoretic and chemical stimulation in hamster and frog.IX Int. Symp. Olfact. Taste Abstr. Snowmass Village, Colo. p. S41

  25. Hettinger, T.P., Frank, M.E. 1986. Amiloride produces acute inhibition and chronic sensitization of neural taste responses to sodium chloride.IX. Int. Symp. Olfact. Taste Abstr. Snowmass Village, Colo. p. S40

  26. Hill, D.L., Bour, T.C. 1985. Addition of functional amiloride-sensitive components to the receptor membrane: A possible mechanism for altered taste responses during development.Dev. Brain Res. 20:310–313

    Google Scholar 

  27. Hodgkin, A.L., Katz, B. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid.J. Physiol. (London) 108:37–77

    Google Scholar 

  28. Kaczorowski, G.J., Barros, F., Dethmers, J.K., Trumble, M.J., Cragoe, E.J., Jr. 1985. Inhibition of Na/Ca exchange in pituitary plasma membrane vesicles by analogues of amiloride.Biochemistry 24:1394–1403

    PubMed  Google Scholar 

  29. Kinnamon, S.C., Roper, S.D. 1986. Passive and active membrane properties of mudpuppy taste receptor cells.J. Physiol. (London) 383:601–614

    Google Scholar 

  30. Kinnamon, S.C., Roper, S.D. 1988. Membrane properties of isolated mudpuppy taste cells.J. Gen. Physiol. 91:351–371

    PubMed  Google Scholar 

  31. Lancet, D., Striem, B.J., Pace, U., Zehavi, U., Naim, M. 1987. Adenylate cyclase and GTP binding protein in rat sweet taste transduction.Neurosci. Soc. Abstr. 13:361

    Google Scholar 

  32. Lewis, S.A., Wills, N.K. 1981. Localisation of the aldosterone response in rabbit urinary bladder by electrophysiological techniques.Ann. N.Y. Acad. Sci. 372:56–63

    PubMed  Google Scholar 

  33. Li, J.H.-Y., Cragoe, E.J., Jr., Lindemann, B. 1987. Structure-activity relationship of amiloride analogs as blockers of epithelial Na channels: II. Side-chain modifications.J. Membrane Biol. 95:171–185

    Google Scholar 

  34. Li, J.H.-Y., Palmer, L.G., Edelman, I.S., Lindemann, B. 1982. The role of sodium-channel density in the natriferic response of the toad urinary bladder to an antidiuretic hormone.J. Membrane Biol. 64:77–89

    Google Scholar 

  35. Lindemann, B. 1984. Fluctuation analysis of sodium channels in epithelia.Annu. Rev. Physiol. 46:497–515

    PubMed  Google Scholar 

  36. McPheeters, M., Roper, S.D. 1985. Amiloride does not block taste transduction in the mudpuppy,Necturus maculosus.Chem. Senses 10:341–352

    Google Scholar 

  37. Mierson, S., Heck, G.L., DeSimone, S.K., Biber, T.U.L., DeSimone, J.A. 1985. The identity of the current carriers in canine lingual epithelium in vitro.Biochim. Biophys. Acta 816:283–293

    PubMed  Google Scholar 

  38. Nagahama, S., Kurihara, K. 1985. Norepinephrine as a possible transmitter involved in synaptic transmission in frog taste organs and Ca dependence of its release.J. Gen. Physiol. 85:431–442

    PubMed  Google Scholar 

  39. Nakamura, T., Gold, G.H. 1987. A cyclic nucleotide-gated conductance in olfactory cilia.Nature (London) 325:442–444

    Google Scholar 

  40. Okada, Y., Miyamoto, T., Sato, T. 1985. Arterial perfusion of frog tongue for intracellular recording of taste cell receptor potential.Comp. Biochem. Physiol. 81A:247–250

    Google Scholar 

  41. Okada, Y., Miyamoto, T., Sato, T. 1986. Contribution of the receptor and basolateral membranes to the resting potential of a frog taste cell.Jpn. J. Physiol. 36:139–150

    PubMed  Google Scholar 

  42. Okada, Y., Miyamoto, T., Sato, T. 1987. Depolarization induced by injection of cyclic nucleotides into frog taste cell.Biochim. Biophys. Acta 904:187–190

    PubMed  Google Scholar 

  43. Palmer, L.G. 1982. Ion selectivity of the apical membrane Na channel in the toad urinary bladder.J. Membrane Biol. 67:91–98

    Google Scholar 

  44. Palmer, L.G. 1984. Voltage-dependent block by amiloride and other monovalent cations of apical Na channels in the toad urinary bladder.J. Membrane Biol. 80:153–165

    Google Scholar 

  45. Palmer, L.G., Frindt, G. 1988. Amiloride sensitive Na channels from the apical membrane of the rat cortical collecting tubule.Proc. Natl. Acad. Sci. USA 83:2767–2770

    Google Scholar 

  46. Parsons, R. 1959. Handbook of Electrochemical Constants. Butterworth Scientific, London

    Google Scholar 

  47. Pisam, M., Ripoche, P. 1976. Redistribution of surface macromolecules in dissociated epithelial cells.J. Cell Biol. 71:907–920

    PubMed  Google Scholar 

  48. Richter, H.-P., Avenet, P., Mestres, P., Lindemann, B. 1988. Gustatory receptors and neighbouring cells in the surface layer of the frog's taste disc:In situ relationships and response to cell isolation.Cell Tissue Res. 254:83–96

    Google Scholar 

  49. Sariban-Sohraby, S., Benos, D.J. 1986. The amiloride-sensitive sodium channel.Am. J. Physiol. 250:C175-C190

    PubMed  Google Scholar 

  50. Sato, M. 1980. Recent advances in the physiology of taste cells.Prog. Neurobiol. 14:25–67

    PubMed  Google Scholar 

  51. Sato, T. 1972. Multiple sensitivity of single taste cells of the frog tongue to four basic taste stimuli.J. Cell. Physiol. 80:207–218

    PubMed  Google Scholar 

  52. Schiffman, S.S., Lockhead, E., Maes, F.W. 1983. Amiloride reduces the taste intensity of Na and Li salts and sweeteners.Proc. Natl. Acad. Sci. USA 80:6136–6140

    PubMed  Google Scholar 

  53. Schiffman, S.S., Simon, S.A., Gill, J.M., Beeker, T.G. 1986. Bretylium tosylate enhances salt taste.Physiol. Behav. 36:1129–1137

    PubMed  Google Scholar 

  54. Simon, S.A., Garvin, J.L. 1985. Salt and acid studies on canine lingual epithelium.Am. J. Physiol. 249:C398-C408

    PubMed  Google Scholar 

  55. Simon, S.A., Robb, R., Garvin, J.L. 1986. Epithelial responses of rabbit tongues and their involvement in taste transduction.Am. J. Physiol. 251:R598-R608

    PubMed  Google Scholar 

  56. Tang, C.-M., Presser, F., Morad, M. 1988. Amiloride selectively blocks the low threshold (T) calcium channel.Science 240:213–215

    PubMed  Google Scholar 

  57. Tonosaki, K., Funakoshi, M. 1984. Intracellular taste cell response of mouse.Comp. Biochem. Physiol. 78A:651–656

    Google Scholar 

  58. Tonosaki, K., Funakoshi, M. 1988. Cyclic nucleotides may mediate taste transduction.Nature (London) 331:354–356

    Google Scholar 

  59. Tonosaki, K., Funakoshi, M. 1988. Voltage- and currentclamp recordings of the receptor potential in mouse taste cells.Brain Res. 445:363–366

    PubMed  Google Scholar 

  60. Van Driessche, W., Zeiske, W. 1985. Ionic channels in epithelial cell membranes.Physiol. Rev. 65:833–903

    PubMed  Google Scholar 

  61. Warncke, J., Lindemann, B., 1987. Voltage dependence of Na channel blockage by amiloride: Relaxation effects in admittance spectra.J. Membrane Biol. 86:255–265

    Google Scholar 

  62. Warncke, J., Lindemann, B. 1987. Voltage dependence of the blocking rate constants of amiloride at apical Na channels.Pfluegers Arch. 405:S89-S94

    Google Scholar 

  63. Wills, N.K., Zweifach, A. 1987. Recent advances in the characterization of epithelial ionic channels.Biochim. Biophys. Acta 906:1–31

    PubMed  Google Scholar 

  64. Yoshii, K., Kiyomoto, Y., Kurihara, K. 1986. Taste receptor mechanism of salts in frog and rat.Comp. Biochem. Physiol. 85:501–507

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avenet, P., Lindemann, B. Amiloride-blockable sodium currents in isolated taste receptor cells. J. Membrain Biol. 105, 245–255 (1988). https://doi.org/10.1007/BF01871001

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871001

Key Words

Navigation