Skip to main content
Log in

Activation and conductance properties of ryanodine-sensitive calcium channels from brain microsomal membranes incorporated into planar lipid bilayers

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Rat brain microsomal membranes were found to contain high-affinity binding sites for the alkaloid ryanodine (k d 3nm.B max 0.6 pmol per mg protein). Exposure of planar lipid bilayers to microsomal membrane vesicles resulted in the incorporation, apparently by bilayer-vesicle fusion, of at least two types of ion channel. These were selective for Cl and Ca2+, respectively. The reconstituted Ca2+ channels were functionally modified by 1 μm ryanodine, which induced a nearly permanently open subconductance state. Unmodified Ca2+ channels had a slope conductance of almost 100 pS in 54mm CaHEPES and a Ca2+/TRIS+ permeability ratio of 11.0. They also conducted other divalent cations (Ba2+>Ca2+>Sr2+>Mg2+) and were markedly activated by ATP and its nonhydrolysable derivative AMPPCP (1mm). Inositol 1,4,5-trisphosphate (1–10 μm) partially activated the same channels by increasing their opening rate. Brain microsomes therefore contain ryanodine-sensitive Ca2+ channels, sharing some of the characteristics of Ca2+ channels from striated but not smooth muscle sarcoplasmic reticulum. Evidence is presented to suggest they were incorporated into bilayers following the fusion of endoplasmic reticulum membrane vesicles, and their sensitivity to inositol trisphosphate may be consistent with a role in Ca2+ release from internal membrane stores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Berridge, M.J., Irvine, R.F. 1984. Inositol trisphosphate, a novel second messenger in cellular signal transduction.Nature (London) 312:315–321

    Article  Google Scholar 

  • Blaustein, M.P., Ratzleff, R.W., Schweitzer, E.S. 1978. Calcium buffering in pre-synaptic nerve terminals.J. Gen. Physiol. 72:43–66

    PubMed  Google Scholar 

  • Costantin, L.L. 1975. Contractile activation in striated muscle.Prog. Biophys. Mol. Biol. 29:197–224

    PubMed  Google Scholar 

  • Cotman, C.W. 1974. Isolation of synaptosomal and synaptic plasma membrane fractions.Meth. Enzymol. 31A:445–452

    Google Scholar 

  • Dawson, A.P. 1985. GTP enhances inositol trisphosphate-stimulated Ca2+ release from rat liver microsomes.FEBS Lett. 185:147–150

    PubMed  Google Scholar 

  • Engel, A., Massalski, A., Schindler, H., Dorset, D.L., Rosenbusch, J.P. 1985. Porin channel triplets merge into single outlets inEscherichia coli outer membranes.Nature (London) 317:643–645

    Google Scholar 

  • Erlich, B.E., Watras, J. 1988. Inositol 1,4,5-trisphosphate activates a channel from smooth muscle sacroplasmic reticulum.Nature (London) 336:583–586

    Google Scholar 

  • Farley, J., Rudy, B. 1988. Multiple types of voltage-dependent Ca2+-activated K+ channels of large conductance in rat brain synaptosomal membranes.Biophys. J. 53:919–934

    Google Scholar 

  • Fatt, P., Ginsborg, B.L. 1958. The ionic requirements for the production of action potentials in crustacean muscle fibres.J. Physiol. (London) 142:516–543

    Google Scholar 

  • Fill, M., Coronado, R. 1988. Ryanodine receptor channel of sarcoplasmic reticulum.Trends Neurosci. 11:453–457

    PubMed  Google Scholar 

  • Gill, D.E., Ueda, T., Chueh, S.-H., Noel, M.W. 1986. Ca2+ release from endoplasmic reticulum is mediated by a guanine nucleotide regulatory mechanism.Nature (London) 320:461–464

    Google Scholar 

  • Gray, E.G., Whittaker, V.P. 1962. The isolation of nerve-endings from brain: An EM study of cell fragments derived by homogenisation and centrifugation.J. Anat. 96:79–87

    PubMed  Google Scholar 

  • Hille, B. 1984. Ionic Channels of Excitable Membranes. Sinauer, Sunderland, MA

    Google Scholar 

  • Katz, B. 1969. The Release of Neural Transmitter Substances. The Sherrington Lectures, vol. X. Liverpool University Press, Liverpool

    Google Scholar 

  • Kuno, M., Gardner, P. 1987. Ion channels activated by inositol 1,4,5-trisphosphate in plasma membrane of human T-lymphocytes.Nature (London) 326:301–304

    Google Scholar 

  • Lai, F.A., Erickson, H.P., Rousseau, E., Liu, Q.-Y., Meissner, G. 1988. Purification and reconstitution of the calcium release channel from skeletal muscle.Nature (London) 331:315–319

    Google Scholar 

  • Lansman, J.B., Hess, P., Tsien, R.W. 1986. Blockade of current through single calcium channels by Cd+, Mg+ and Ca2+.J. Gen. Physiol. 88:321–347

    PubMed  Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, D.L., Randall, R.J. 1951. Protein measurements with the Folin-phenol reagent.J. Biol. Chem. 193:265–275

    PubMed  Google Scholar 

  • Ma, J., Fill, M., Knudson, C.M., Campbell, K.P., Coronado, R. 1988. Ryanodine receptor of skeletal muscle is a gap-junction type channel.Science 242:99–102

    PubMed  Google Scholar 

  • Mannella, C.A., Colombini, M., Frank, J. 1983. Structural and functional evidence for multiple channel complexes in the outer membrane ofNeurospora crassa mitochondria.Proc. Natl. Acad. Sci. USA 80:2243–2247

    PubMed  Google Scholar 

  • Meldolesi, J., Pompeo, V., Pozzan, T. 1988. The intracellular distribution of calcium.Trends Neurosci. 11:449–452

    PubMed  Google Scholar 

  • Meyer, T., Holowka, D., Stryer, L. 1988. Highly-cooperative opening of calcium channels by inositol 1,4,5-trisphosphate.Science 240:653–656

    PubMed  Google Scholar 

  • Miller, C. (editor) 1986. Ion Channel Reconstitution. Plenum, New York

    Google Scholar 

  • Miller, C., Rosenberg, R.L. 1979. A voltage-gated cation conductance from frog sarcoplasmic reticulum. Effect of transition metal ions.Biochemistry 18:1138–1145

    PubMed  Google Scholar 

  • Morris, A.P., Gallacher, D.V., Irvine, R.F., Petersen, O.H. 1987. Synergism of inositol trisphosphate and tetrakisphosphate in activating Ca2+-dependent K+ channels.Nature (London) 330:653–655

    Google Scholar 

  • Nelson, M.T., French, R.J., Krueger, B.K. 1984. Voltage-dependent calcium channels from brain incorporated into planar lipid bilayers.Nature (London) 308:77–79

    Google Scholar 

  • Nishizuka, Y. 1984. Turnover of inositol phospholipids and signal transduction.Science 225:1365–1370

    PubMed  Google Scholar 

  • Parker, I., Miledi, R. 1987. Injection of 1,3,4,5-tetrakisphosphate intoXenopus oocytes generates a chloride current dependent upon intracellular calcium.Proc. R. Soc. London B 232:59–70

    Google Scholar 

  • Pollard, H.B., Tack-Goldman, K., Pazoles, C.J., Cruetz, C.E., Shulman, N.R. 1977. Evidence for control of serotonin secretion from human platelets by hydroxyl ion transport and osmotic lysis.Proc. Natl. Acad. Sci. USA 74:5295–5299

    PubMed  Google Scholar 

  • Putney, J.R. 1986. A model for receptor-regulated calcium entry.Cell Ca 7:1–12

    PubMed  Google Scholar 

  • Rousseau, E., Smith, J.S., Henderson, J.S., Meissner, G. 1986. Single channel and45Ca2+ flux measurements of the cardiac sarcoplasmic reticulum calcium channel.Biophys. J. 50:1009–1014

    PubMed  Google Scholar 

  • Rousseau, E., Smith, J.S., Meissner, G. 1987. Ryanodine modifies conductance and gating behaviour of single Ca2+ release chennel.Am. J. Physiol. 253:C364-C368

    PubMed  Google Scholar 

  • Smith, J.S., Coronado, R., Meissner, G. 1985. Sarcoplasmic reticulum contains adenine nucleotide-activated calcium channels.Nature (London) 316:446–449

    Google Scholar 

  • Smith, J.S., Coronado, R., Meissner, G. 1986. Single channel measurements of the calcium release channel from skeletal muscle sarcoplasmic reticulum. Activation by Ca2+ and ATP and modulation by Mg2+.J. Gen. Physiol. 88:573–588

    PubMed  Google Scholar 

  • Smith, J.S., Imagawa, T., Ma, J., Fill, M., Campbell, K.P., Coronado, R. 1988. Purified ryanodine receptor from rabbit skeletal muscle is the calcium release channel of sarcoplasmic reticulum.J. Gen. Physiol. 92:1–26

    PubMed  Google Scholar 

  • Stanley, E.F., Ehrenstein, G., Russel, J.T. 1988. Evidence for anion channels in secretary vesicles.Neuroscience 25:1035–1039

    PubMed  Google Scholar 

  • Streb, H., Irvine, R.F., Berridge, M.J., Shulz, I. 1983. Release of Ca2+ from a nonmitochondrial store in pancreatic acinar cells by inositol-1,4,5-trisphosphate.Nature (London) 306:67–69

    Google Scholar 

  • Suarez-Isla, B.A., Irribarra, V., Oberhauser, A., Larralde, L., Bull, R., Hidalgo, C., Jaimovich, E. 1988. Inositol (1,4,5)-trisphosphate activates a calcium channel in isolated sarcoplasmic reticulum membranes.Biophys. J. 54:737–741

    PubMed  Google Scholar 

  • Sutko, J.L., Willerson, J.T., Templeton, G.M., Jones, L.R., Besch, H.R. 1979. Ryanodine: its alteration of cat papillary muscle contractile state and responsiveness to inotropic intervention and a suggested mechanism of action.J. Pharmacol. Expt. Ther. 209:37–47

    Google Scholar 

  • Tanifuji, M., Sokabe, M., Kasai, M. 1987. An anion channel of sarcoplasmis reticulum incorporated into planar bilayers: Single-channel behavior and conductance properties.J. Membrane Biol. 99:103–111

    Google Scholar 

  • Toro, L., Dettbarn, C., Palade, P., Stefani, E. 1989. Calcium uptake, caffeine-induced calcium release and ryanodine binding of isolated uterine smooth muscle S.R.Biophys. J. 55:477a

    Google Scholar 

  • Vassilev, P.M., Kanazirska, M.P., Tien, H.T. 1987. Ca2+ channels from brain microsomal membranes reconstituted in patch-clamp bilayers.Biochim. Biophys. Acta 897:324–330

    PubMed  Google Scholar 

  • Woodbury, D.J., Hall, J.E. 1988. Role of channels in the fusion of vesicles with a planar bilayer.Biophys. J. 54:1053–1063

    PubMed  Google Scholar 

  • Zampighi, G.A., Hall, J.E., Kreman, M. 1985. Purified lens junctional protein forms channels in planar lipid films.Proc. Natl. Acad. Sci. USA 82:8468–8472

    PubMed  Google Scholar 

  • Zschauer, A., van Breemen, C., Buhler, F.R., Nelson, M.T. 1988. Calcium channels in thrombin-activated human platelet membrane.Nature (London) 334:703–705

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashley, R.H. Activation and conductance properties of ryanodine-sensitive calcium channels from brain microsomal membranes incorporated into planar lipid bilayers. J. Membrain Biol. 111, 179–189 (1989). https://doi.org/10.1007/BF01871781

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871781

Key Words

Navigation