Skip to main content
Log in

Coerulospinal influence on recurrent inhibition of spinal motonuclei innervating antagonistic hindleg muscles of the cat

  • Excitable Tissues and Central Nervous Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The locus coeruleus's (LC's) effect on recurrent inhibition of gastrocnemius-soleus (GS) and common peroneal (CP) monosynaptic reflexes (MSRs) was demonstrated to exceed the concomitant facilitation, indicating the independency of LC's disinhibition and facilitation measures in this study. In contrast, the disinhibition effect correlated closely with the recurrently inhibited MSRs. The disinhibition phenomenon was also accompanied by progressive delay and diminution in the Renshaw cell field potential. Hence, the recovery of recurrently inhibited MSRs was probably due, in part at least, to the LC's inhibition of the related Renshaw cell activity. Furthermore, the site-specific, discordant changes in the disinhibition of GS, compared with CP MSRs, as revealed by tracking studies imply that representations of these antagonistic motonuclei may occupy different LC loci. Accordingly, the nonuniform disinhibition may be due to the activation of discrete aggregates of LC neurons which are responsible predominantly in controlling the recurrent inhibitory pathway belonging to one or the other of the antagonistic motonuclei. These findings support a differential LC inhibitory control of Renshaw cell activity, releasing the related motoneurons for the Ia synaptic transmission — a disinhibitory process that is crucial for the LC's independent control of the recurrent circuit of antagonistics extensor and flexor motoneurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D'Ascanio P, Bettini E Pompeiano O (1985) Tonic inhibitory influences of locus coeruleus on the response gain of limb extensors to sinusoidal labyrinth and neck stimulations. Arch Ital Biol 123:69–100

    PubMed  Google Scholar 

  2. Barnes CD, Fung SJ, Gintautas J (1980) Brainstem noradrenergic system depression by cyclobenzaprine. Neuropharmacology 19:221–224

    Article  CAS  PubMed  Google Scholar 

  3. Belcher G, Ryall RW (1977) Substance P and Renshaw cells: a new concept of inhibitory synaptic interactions. J Physiol (Lond) 272:105–119

    Article  CAS  Google Scholar 

  4. Berman AL (1968) The brain stem of the cat: a cytoarchitectonic atlas with coordinates. University of Wisconsin Press. Madison

    Google Scholar 

  5. Biscoe TJ, Curtis DR (1966) Noradrenaline and inhibition of Renshaw cells. Science 151:1230–1231

    Article  CAS  PubMed  Google Scholar 

  6. Chan JYH, Fung SJ, Chan SHH, Barnes CD (1986) Facilitation of lumbar monosynaptic reflexes by locus coeruleus in the rat. Brain Res 369:103–109

    Article  CAS  PubMed  Google Scholar 

  7. Charnay Y, Leger L, Dray F, Berod A, Jouvet M, Dubois PM (1982) Evidence for the presence of enkephalin in catecholaminergic neurones of cat locus coeruleus. Neurosci Lett 30:147–151

    Article  CAS  PubMed  Google Scholar 

  8. Charnay Y, Leger L, Rossier J, Jouvet M, Dubois PM (1985) Evidence for synenkephalin-like immunoreactivity in pontobulbar monoaminergic neurons of the cat. Brain Res 335:160–164

    Article  CAS  PubMed  Google Scholar 

  9. Chu NS, Bloom FE (1974) The catecholamine-containing neurons in the cat dorsolateral pontine tegmentum: distribution of the cell bodies and some axonal projections. Brain Res 66:1–21

    Article  Google Scholar 

  10. Davies J, Dray A (1976) Effects of enkephalin and morphine on Renshaw cells in feline spinal cord. Nature 262:603–604

    Article  CAS  PubMed  Google Scholar 

  11. Davies J, Dray A (1977) Substance P and opiate receptors. Nature 268:351–352

    Article  CAS  PubMed  Google Scholar 

  12. Davies J, Dray A (1978) Pharmacological and electrophysiological studies of morphine and enkephalin on rat supraspinal neurones and cat spinal neurones. Br J Pharmacol 63:87–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Eccles JC (1961) Inhibitory pathways to motoneurons. In: Florey E (ed) Nervous inhibition. Pergamon Press, Oxford, pp 47–60

    Google Scholar 

  14. Eccles JC, Fatt P, Koketsu K (1954) Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. J Physiol. (Lond) 126:524–562

    Article  CAS  Google Scholar 

  15. Engberg I, Ryall RW (1966) The inhibitory action of noradrenaline and other monoamines on spinal neurones. J Physiol (Lond) 185:298–322

    Article  CAS  Google Scholar 

  16. Foote SL, Bloom FE, Aston-Jones G (1983) Nucleus locus coeruleus: new evidence of anatomical and physiological specificity. Physiol Rev 63:844–914

    CAS  PubMed  Google Scholar 

  17. Fromm C, Haase J, Wolf E (1977) Depression of the recurrent inhibition of extensor motoneurons by the action of group II afferents. Brain Res 120:459–468

    Article  CAS  PubMed  Google Scholar 

  18. Fung SJ, Barnes CD (1981) Evidence of facilitatory coerulospinal action in lumbar motoneurons of cats. Brain Res 216:299–311

    Article  CAS  PubMed  Google Scholar 

  19. Fung SJ, Barnes CD (1984) Locus coeruleus control of spinal cord activity. In: Barnes CD (ed) Brainstem control of spinal cord function. Research topics in physiology, vol 6. Academic Press, Orlando, pp 215–255

    Chapter  Google Scholar 

  20. Fung SJ, Barnes CD (1986) Increased efficacy of antidromic and orthodromic activation of cat alpha motoneurons upon arrival of coerulospinal volleys. Arch Ital Biol 124:229–243

    CAS  PubMed  Google Scholar 

  21. Fung SJ, Barnes CD (1987) Membrane excitability changes in hindlimb motoneurons induced by stimulation of the locus coeruleus in cats. Brain Res 402:230–242

    Article  CAS  PubMed  Google Scholar 

  22. Fung SJ, Barnes CD (1988) Presynaptic facilitatory action of locus coeruleus stimulation upon hindlimb sensory impulse transmission in decerebrate cats. Arch Ital Biol 125:187–200

    Google Scholar 

  23. Fung SJ, Barnes CD (1988) Coerulospinal enhancement of repetitive firing with correlative changes in postspike afterhyperpolarization of cat spinal motoneurons. Arch Ital Biol 125:171–186

    Google Scholar 

  24. Fung SJ, Pompeiano O, Barnes CD (1987) Suppression of the recurrent inhibitory pathway in lumbar cord segments during locus coeruleus stimulation incats. Brain Res 402:351–354

    Article  CAS  PubMed  Google Scholar 

  25. Fung SJ, Pompeiano O, Barnes CD (1987) Nonuniform coerulospinal control of recurrent inhibition of cat hindlimb flexor and extensor monosynaptic reflexes. Fed Proc 46:341

    Google Scholar 

  26. Granit R, Haase J, Rutledge LT (1960) Recurrent inhibition in relation to frequency of firing and limitation of discharge rate of extensor motoneurones. J Physiol (Lond) 154:308–328

    Article  CAS  Google Scholar 

  27. Haase J, Van der Meulen JP (1961) Effects of supraspinal stimulation on Renshaw cells belonging to extensor motoneurones. J Neurophysiol 24:510–520

    CAS  PubMed  Google Scholar 

  28. Henatsch H-D, Meyer-Lohmann J, Windhorst U, Schmidt J (1986) Differential effects of stimulation of the cat's red nucleus on lumbar alpha motoneurones and their Renshaw cells. Exp Brain Res 62:161–174

    Article  CAS  PubMed  Google Scholar 

  29. Hultborn H, Malmsten J (1983) Changes in segmental reflexes following chronic spinal cord hemisection in the cat. I. Increased monosynaptic and polysynaptic ventral root discharges. Acta Physiol Scand 119:405–422

    Article  CAS  PubMed  Google Scholar 

  30. Hultborn H, Pierrot-Deseilligny E (1979) Changes in recurrent inhibition during voluntary soleus contractions in man studied by an H-reflex technique. J Physiol (Lond) 297:220–251

    Google Scholar 

  31. Hultborn H, Lindstrom S, Wigstrom H (1979) On the function of recurrent inhibition in the spinal cord. Exp Brain Res 37:399–403

    Article  CAS  PubMed  Google Scholar 

  32. Jacobs BL, Gannon PJ, Azmitia EC (1984) Atlas of serotonergic cell bodies in the cat brainstem: an immunocytochemical analysis. Brain Res Bull 13:1–31

    Article  CAS  PubMed  Google Scholar 

  33. Jones BE, Friedman L (1983) Atlas of catecholamine perikarya, varicosities and pathways in the brainstem of the cat. J Comp Neurol 215:382–396

    Article  CAS  PubMed  Google Scholar 

  34. Jones BE, Moore RY (1974) Catecholamine-containing neurons of the nucleus locus coeruleus in the cat. J Comp Neurol 157:43–52

    Article  CAS  PubMed  Google Scholar 

  35. Kitahama K, Arai R, Maeda T, Jouvet M (1986) Demonstration of monoamine oxidase type B in serotonergic and type A in noradrenergic neurons in the cat dorsal pontine tegmentum by an improved histochemical technique. Neurosci Lett 71:19–24

    Article  CAS  PubMed  Google Scholar 

  36. Koehler W, Windhorst U, Schmidt J, Meyer-Lohmann J, Henatsch H-D (1978) Diverging influences on Renshaw cell responses and monosynaptic reflexes from stimulation of capsula interna. Neurosci Lett 8:35–39

    Article  CAS  PubMed  Google Scholar 

  37. Koizumi K, Ushiyama J, Brooks CMcC (1959) A study of reticular formation action on spinal interneurons and motoneurons. Jpn J Physiol 9:282–303

    Article  CAS  PubMed  Google Scholar 

  38. Krnjevic K, Lekic D (1977) Substance P selectively blocks excitation of Renshaw cell by acetylcholine. Can J Physiol Pharmacol 55:958–961

    Article  CAS  PubMed  Google Scholar 

  39. Lagerback P-A, Ronnevi L-O (1982) An ultrastructural study of serially sectioned Renshaw cells. II. Synaptic types. Brain Res 246:181–192

    Article  CAS  PubMed  Google Scholar 

  40. Lai YY, Barnes CD (1985) A spinal projection of serotonergic neurons of the locus coeruleus in the cat. Neurosci Lett 58: 159–164

    Article  CAS  PubMed  Google Scholar 

  41. Leger L, Hernandez-Nicaise M-L (1980) The cart locus coeruleus: light and electron microscopic study of the neuronal somata. Anat Embryol 159:181–198

    Article  CAS  PubMed  Google Scholar 

  42. Leger L, Wiklund L (1982) Distribution and numbers of indoleamine cell bodies in the cat brainstem determined with Falck-Hillarp fluorescence histochemistry. Brain Res Bull 9:245–251

    Article  CAS  PubMed  Google Scholar 

  43. Leger L, Wiklund L, Descarries L, Persson M (1979) Description of an indolaminergic cell component in the cat locus coeruleus: a fluorescence histochemical and radioautographic study. Brain Res 168:43–56

    Article  CAS  PubMed  Google Scholar 

  44. Leger L, Charnay Y, Chayvialle JA, Berod A, Dray F, Pujol JF, Jouvet M, Dubois PM (1983) Localization of substance P- and enkephalin-like immunoreactivity in relation to catecholamine-containing cell bodies in the cat dorsolateral pontine tegmentum: an immunofluorescence study. Neuroscience 8:525–546

    Article  CAS  PubMed  Google Scholar 

  45. Leger L, Charnay Y, Dubois PM, Jouvet M (1986) Distribution of enkephalin-immunoreactive cell bodies in relation to serotonin-containing neurons in the raphe nuclei of the cat: immunohistochemical evidence for the coexistence of enkephalins and serotonin in certain cells. Brain Res 362:63–73

    Article  CAS  PubMed  Google Scholar 

  46. MacLean JB, Leffman H (1967) Supraspinal control of Renshaw cells. Exp Neurol 18:94–104

    Article  CAS  PubMed  Google Scholar 

  47. Maeda T, Pin C, Salvert D, Ligier M, Jouvet M (1973) Les neurones contenant des catecholamines du tegmentum pontique et leurs voies de projection chez le chat. Brain Res 57:119–152

    Article  CAS  PubMed  Google Scholar 

  48. Miachon S, Berod A, Leger L, Chat M, Hartman B, Pujol JF (1984) Identification of catecholamine cell bodies in the pons and pons-mesencephalon junction of the cat brain using tyrosine hydroxylase and dopamine-β-hydroxylase immunohistochemistry. Brain Res 305:369–374

    Article  CAS  PubMed  Google Scholar 

  49. Pelletier G, Steinbusch HWM, Verhofstad AAJ (1981) Immunoreactive substance P and serotonin present in the same dense-core vesicles. Nature 293:71–72

    Article  CAS  PubMed  Google Scholar 

  50. Persson M, Wiklund L (1981) Scattered catecholaminergic cells in the dorsolateral tegmentum caudal to locus coeruleus in cat. Neurosci Lett 23:275–280

    Article  CAS  PubMed  Google Scholar 

  51. Pòitras D, Parent A (1978) Atlas of the distribution of monoamine-containing nerve cell bodies in the braim stem of the cat. J Comp Neurol 179:699–718

    Article  PubMed  Google Scholar 

  52. Pompeiano O (1984) Recurrent inhibition. In: Davidoff RA (ed) Handbook of the spinal cord, vols 2 and 3. Dekker, New York Basel, pp 461–557

    Google Scholar 

  53. Pompeiano O, Wand P, Sontag K-H (1975) Response of Renshaw cells to sinusoidal stretch of hindlimb extensor muscles. Arch Ital Biol 113:205–237

    CAS  PubMed  Google Scholar 

  54. Pompeiano O, Wand P, Srivastava UC (1985) Influence of Renshaw cells on the response gain of hindlimb extensor muscles to sinusoidal labyrinth stimulation. Pflügers Arch 404:107–118

    Article  CAS  PubMed  Google Scholar 

  55. Reddy VK, Fung SJ, Bowker RM, Barnes CD (1987) Quantitative composition of tyrosine hydroxylase (TH)-like immunoreactive neurons of the dorsolateral pons projecting to cervical and lumbar enlargements in the cat. Anat Rec 218:111A

    Article  Google Scholar 

  56. Renshaw B (1941) Influence of discharge of motoneurons upon excitation of neighboring motoneurons. J Neurophysiol 4:167–183

    Google Scholar 

  57. Ryall RW (1970) Renshaw cell mediated inhibition of Renshaw cells: patterns of excitation and inhibition from impulses in motor-axon collaterals. J Neurophysiol 33:257–270

    CAS  PubMed  Google Scholar 

  58. Ryall RW (1981) Patterns of recurrent excitation and mutual inhibition of cat Renshaw cells. J Physiol (Lond) 316:439–452

    Article  CAS  Google Scholar 

  59. Ryall RW, Belcher G (1977) Substance P selectively blocks nicotinic receptors on Renshaw cells: a possible synaptic inhibitory mechanism. Brain Res 137:376–380

    Article  CAS  PubMed  Google Scholar 

  60. Ryall RW, Piercey MF, Polosa C (1971) Intersegmental and intrasegmental distribution of mutual inhibition of Renshaw cells. J Neurophysiol 34:700–707

    CAS  PubMed  Google Scholar 

  61. Sakai K, Sastre JP, Salvert D, Touret M, Tohyama M, Jouvet M (1979) Tegmentoreticular projections with special reference to the muscular atonia during paradoxical sleep in the cat: an HRP study. Brain Res 176:233–254

    Article  CAS  PubMed  Google Scholar 

  62. Sastry BSR, Sinclair JG (1976) Tonic inhibitory influence of a supraspinal monoaminergic system on recurrent inhibition of an extensor monosynaptic reflex. Brain Res 117:69–76

    Article  CAS  PubMed  Google Scholar 

  63. Sinclair JG, Sastry BSR (1974) Supraspinal monoaminergic involvement in the blockade of recurrent inhibition of the monosynaptic reflex. Neuropharmacology 13:741–747

    Article  CAS  PubMed  Google Scholar 

  64. Stevens RT, Hodge CJ, Apkarian AV (1982) Kölliker-Fuse nucleus: the principal source of pontine catecholaminergic cells projecting to the lumbar spinal cord of cat. Brain Res 239:589–594

    Article  CAS  PubMed  Google Scholar 

  65. Strahlendorf JC, Strahlendorf HK, Kinglsey RE, Gintautas J, Barnes CD (1980) Facilitation of the lumbar monosynaptic reflex by locus coeruleus stimulation. Neuropharmacology 19:225–230

    Article  CAS  PubMed  Google Scholar 

  66. Tan U, Henatsch HD (1969) Wirkungen von Imipramin auf die spinalmotorischen Extensor- und Flexor-Systeme der Katze. Naunyn-Schmiedeberg's Arch Exp Pathol Pharmacol 262: 337–357

    Article  CAS  Google Scholar 

  67. Weight FF, Salmoiraghi GC (1966) Adrenergic responses of Renshaw cells. J Pharmacol Exp Ther 154:391–397

    CAS  PubMed  Google Scholar 

  68. Wiklund L, Leger L, Persson M (1981) Monoamine cell distribution in the cat brain stem. A fluorescence histochemical study with quantification of indoleaminergic and locus coeruleus cell groups. J Comp Neurol 203:613–647

    Article  CAS  PubMed  Google Scholar 

  69. Wilson VJ, Burgess P (1962) Disinhibition in the cat spinal cord. J Neurophysiol 25:392–404

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fung, S.J., Pompeiano, O. & Barnes, C.D. Coerulospinal influence on recurrent inhibition of spinal motonuclei innervating antagonistic hindleg muscles of the cat. Pflugers Arch. 412, 346–353 (1988). https://doi.org/10.1007/BF01907550

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01907550

Key words

Navigation