Skip to main content
Log in

Sensorimotor transformation from light reception to phototactic behavior inDrosophila larvae (Diptera: Drosophilidae)

  • Minireview
  • Published:
Journal of Insect Behavior Aims and scope Submit manuscript

Abstract

In this paper we examine theDrosophila melanogaster larval response to light. We survey the morphology of the larval visual and motor systems in relation to larval locomotory behavior and phototaxis. In addition, this paper proposes a model of sensorimotor transformation and examines the reversal in taxis occurring at theD. melanogaster larval wnadering stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alvarez, G., Farina, J., and Fontdevila, A. (1979). Density and frequency-dependent selection on the singed locus ofDrosophila melanogaster.Genetica 50: 161–166.

    Article  Google Scholar 

  • Ashbumer, M. (1989).Drosophila, a Laboratory Handbook, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Ashburner, M., and Wright, T. R. F. (1978).The Genetics and Biology of Drosophila, Vol. 2B, Academic Press, London.

    Google Scholar 

  • Bodenstein, D. (1950). The postembryonic development ofDrosophila. In Demerec, M. (ed.),Biology of Drosophila, J. Wiley and Sons, New York, pp. 275–364.

    Google Scholar 

  • Bolwig, N. (1946). Sense and sense organs of the anterior end of the house fly larvae.Vidensk. Medd. Dan. Naturhist. Foren. 109: 81–217.

    Google Scholar 

  • Campos, A. R., Grossman, D., and White, K. (1985). Mutant alleles at the locus elav inDrosophila melanogaster lead to nervous system defects. A developmental-genetic analysis.J. Neurogenet. 2: 197–218.

    PubMed  CAS  Google Scholar 

  • Campos, A. R., Rosen, D. R., Robinow, S. N., and White, K. (1987) Molecular analysis of the locuselav inDrosophila melanogaster: A gene whose embryonic expression is neural specific.EMBO J. 6: 425–431.

    PubMed  CAS  Google Scholar 

  • Campos, A. R., Lee, K. J., and Steller, H. (1994). Establishment of neuronal connectivity during development of theDrosophila larval visual system (submitted for publication).

  • Churchland, P. S., and Sejnowski, T. J. (1987).The Computational Brain, MIT, Boston.

    Google Scholar 

  • Demerec, M., and Kaufmann, B. P. (1940).Drosophila Guide, Carnegie Institution of Washington Publication, Washington, DC.

    Google Scholar 

  • Dominick, O. S., and Truman, J. W. (1986a). The physiology of wandering behaviour inManduca sexta. III. Organization of wandering behaviour in the larval nervous system.J. Exp. Biol. 121: 115–132.

    PubMed  CAS  Google Scholar 

  • Dominick, O. S., and Truman, J. W. (1986b). The physiology of wandering behaviour inManduca seta. IV. Hormonal induction of wandering behaviour from the isolated nervous system.J. Exp. Biol. 121: 131–151.

    Google Scholar 

  • Dominick, O. S., and Truman, J. W. (1985). The physiology of wandering behaviour inManduca sexta. II. The endocrine control of wandering behaviour.J. Exp. Biol. 117: 45–68.

    PubMed  CAS  Google Scholar 

  • Dominick, O. S., and Truman, J. W. (1984). The physiology of wandering behaviour inManduca sexta. I. Temporal organization and the influence of the internal and external environments.J. Exp. Biol. 110: 35–51.

    PubMed  CAS  Google Scholar 

  • Ellsworth, J. K. (1933). The photoreceptive organs of a fleshfly larvae,Lucilia sericata: An experimental and anatomical study.Ann. Entomol. Soc. Am. 26: 200–215.

    Google Scholar 

  • Fischbach, K. F. (1983). Neural cell types surviving congenital sensory deprivation in the optic lobes ofDrosophila melanogaster.Dev. Biol. 95: 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Fogelman, J. C., and Markow, T. A. (1982). Behavioral differentiation between two species of cactophilicDrosophila. II. Pupation site preference.Southwest Nat. 27: 315–320.

    Google Scholar 

  • Fraenkel, G. S., and Gunn, D. L. (1961).The Orientation of Animals, Dover, New York.

    Google Scholar 

  • Godoy-Herrera, R., Cifuentes, L., de Arcaya, M. F. D., Fernandes, M., Fuentes, M., Reyes, I., and Valderrama, C. (1989). The behaviour ofDrosophila melanogaster larvae during pupation.Anim. Behav. 37: 820–829.

    Article  Google Scholar 

  • Godoy-Herrera, R., Alarcon, M., Caceres, H., Loyola, I., Navarrete, I., and Vega, J. L. (1992). The development of photoresponse inDrosophila melanogaster larvae.Revista Chilena de Historia Natural 65: 91–101.

    Google Scholar 

  • Graf, W., and Baker, R. (1983). Adaptive changes of the vestibular-ocular reflex in flatfish are achieved by reorganization of central nervous pathways.Science 221: 777–779.

    PubMed  CAS  Google Scholar 

  • Graf, W., and Baker, R. (1990). Neuronal adaptation accompanying metamorphosis in the flatfish.J. Neurobiol. 21: 1136–1152.

    Article  PubMed  CAS  Google Scholar 

  • Green, P., Hartenstein, A. Y., and Hartenstein, V. (1993). The embryonic development of theDrosophila visual system.Cell Tissue Res. 273: 583–598.

    Article  PubMed  CAS  Google Scholar 

  • Grossfield, J. (1978). Non-sexual behavior ofDrosophila. In Ashburner, M., and Wright, T. R. F. (eds.),The Genetics and Biology of Drosophila, Vol. 2B, Academic Press, New York, pp. 1–126.

    Google Scholar 

  • Hall, J. C. (1978). Behavioral analysis inDrosophila mosaics. In Gehring, W. J. (ed.),Genetic Mosaics and Cell Differentiation, Springer-Verlag, Berlin, pp. 259–305.

    Google Scholar 

  • Hall, J. C., Greenspan, R. J., and Harris, W. A. (1982).Genetic Neurobiology, MIT Press, Cambridge, MA.

    Google Scholar 

  • Hardie, R., and Minke, B. (1992). Thetrp gene is essential for a light activated Ca2+ channel inDrosophila photoreceptors.Neuron 8: 643–651.

    Article  PubMed  CAS  Google Scholar 

  • Heisenberg, M., and Wolf, R. (1984).Vision in Drosophila Genetics of Microbehavior, Springer-Verlag, Berlin.

    Google Scholar 

  • Holmes, S. J. (1905). The selection of random movements as a factor in phototaxis.J. Comp. Neurol. Psychol. 15: 98–112.

    Article  Google Scholar 

  • Jennings, H. S. (1904). Contributions to the study of the behavior of lower organisms.Publ. Carnegie Inst. Wash. 16: 256.

    Google Scholar 

  • Kankel, D. R., Ferrus, A., Garen, S. H., Harte, P. J., and Lewis, P. E. (1978). The structure and development of the nervous system. In Ashburner, M., and Wright, T. R. F. (eds.),The Genetics and Biology of Drosophila, Vol. 2D, Academic Press, New York, pp. 295–368.

    Google Scholar 

  • Kearsey, M. J., and Kojima, K. (1967). The genetic architecture of body weight and egg hatchability inDrosophila melanogaster.Genetics 56: 23–37.

    PubMed  CAS  Google Scholar 

  • Keshishian, H., and Chiba, A. (1993). Neuromuscular development inDrosophila: Insights from single neurons and single genes.Trends Neurosci. 16: 278–283.

    Article  PubMed  CAS  Google Scholar 

  • Lilly, M., and Carlson, J. (1990).smellblind: A gene required forDrosophila olfaction.Genetics 124: 293–302.

    PubMed  CAS  Google Scholar 

  • Lockery, S. R., and Sejnowski, T. J. (1993). The computational leech.Trends Neurosci. 19: 283–290.

    Article  Google Scholar 

  • Manning, A., and Markow, T. A. (1981). Light-dependent putation site preferences inDrosophila. II.D. metanogaster andD. simulans.Behav. Genet. 11: 557–563.

    Article  PubMed  CAS  Google Scholar 

  • Markow, T. (1979). A survey of intra- and interspecific variation for pupation height inDrosophila.Behav. Genet. 9: 209–217.

    Article  PubMed  CAS  Google Scholar 

  • Masai, I., Hosoya, T., Kojima, S., and Hotta, Y. (1992). Molecular cloning of aDrosophila diacylglycerol kinase gene that is expressed in the nervous system and muscle.Proc. Natl. Acad. Sci. USA 89: 6030–6034.

    PubMed  CAS  Google Scholar 

  • Mast, S. O. (1911).Light and the Behavior of Organisms, John Wiley & Sons, New York.

    Google Scholar 

  • Mast, S. O. (1938). Factors involved in the process of orientation of lower organisms in light.Biol. Rev. 13: 186–224.

    Google Scholar 

  • Melamed, J., and Trujillo-Cenoz, O. (1975). The fine structure of the eye imaginal discs in muscoid flies.J. Ultrastruct. Res. 51: 79–93.

    Article  PubMed  CAS  Google Scholar 

  • Meyerowitz, E. M., and Kankel, D. R. (1978). A genetic analysis of visual system development inDrosophila melanogaster.Dev. Biol. 62: 112–142.

    Article  PubMed  CAS  Google Scholar 

  • Mishima, J. (1964). The competition amongDrosophila larvae in different growth stages.Res. Popul. Ecol. 6: 22–27.

    Google Scholar 

  • Morgan, T. H. (1907).Experimental Zoology, Macmillan, New York.

    Google Scholar 

  • Pak, W. L. (1979). Study of photoreceptor function usingDrosophila mutants. In Breakfield, X. O. (ed.),Neurogenetics, Genetic Approaches to the Nervous System, Elsevier, New York, pp. 67–99.

    Google Scholar 

  • O'Tousa, J. E., Leonard, D. S., and Pak, W. L. (1989). Morphological defects inOra jk84 photoreceptors caused by mutation in R1–6 opsin gene ofDrosophila.J. Neurogenet. 6: 41–52.

    PubMed  Google Scholar 

  • Rizki, R. M., and Davis, C. (1953). Light as an ecological determinant of interspecific competition betweenD. willistoni andD. melanogaster.Am. Nat. 87: 389–392.

    Article  Google Scholar 

  • Sameoto, D. D., and Miller, R. S. (1968). Selection of pupation site byDrosophila melanogaster andD. Simulans.Ecology 49: 177–180.

    Google Scholar 

  • Schnebel, E. M., and Grossfield, J. (1986). The influence of light on pupation height inDrosophila.Behav. Genet. 16: 407–413.

    Article  PubMed  CAS  Google Scholar 

  • Snodgrass, R. E. (1924). Anatomy and metamorphosis of the apple maggot.J. Agr. Res. 28: 1–36.

    Google Scholar 

  • Sokolowski, M. B., and Hansell, R. I. (1983). Elucidating the behavioural phenotype ofDrosophila melanogaster larvae: Correlations between larval foraging strategies and pupation height.Behav. Genet. 13: 267–280.

    Article  PubMed  CAS  Google Scholar 

  • Sokolowski, M. B., Kent, C., and Wong, J. (1984).Drosophila larval foraging behaviour: Developmental stages.Anim. Behav. 32: 645–651.

    Google Scholar 

  • Sokolowski, M. B., Bauer, S. J., Wai-Ping, V., Rodriguez, L., Wong, J. L., and Kent, C. (1986). Ecological genetics and behaviour ofDrosophila melanogaster larvae in nature.Anim. Behav. 34: 403–408.

    Google Scholar 

  • Steele, F. R., Washburn, T., Rieger, R., and O'Tousa, J. E. (1992).Drosophila retinal degeneration C rdgC encodes a novel serine/threonine protein phosphatase.Cell 69: 669–676.

    Article  PubMed  CAS  Google Scholar 

  • Steller, H., Fischbach, K. F., and Rubin, G. (1987).disconnected: A locus required for neuronal pathway function in the visual system ofDrosophila.Cell 50: 1139–1153.

    Article  PubMed  CAS  Google Scholar 

  • Tix, S., Minden, J. S., and Technau, G. M. (1989). Pre-existing neuronal pathways in the developing optic lobes ofDrosophila.Development 105: 739–746.

    PubMed  CAS  Google Scholar 

  • Vihtelic, T. S., Hyde, D. R., and O'Tousa, J. E. (1991). Isolation and characterization of theDrosophila retinal degeneration B rdgB gene.Genetic 127: 761–768.

    CAS  Google Scholar 

  • Wehner, W. (1981). Spatial vision in anthropods. In Autrum, H. (ed.),Comparative Physiology and Evolution of Vision in Invertebrates C: Invertebrate Visual Centres and Behavior II, Springer-Verlag, Berlin/Heidelberg/New York, pp. 378–385.

    Google Scholar 

  • White, K., and Kankel, D. R. (1978). Patterns of cell division and cell movement in the formation of the imaginal nervous system inDrosophila melanogaster.Dev. Biol. 65: 296–321.

    Article  PubMed  CAS  Google Scholar 

  • Wong, J. L., Sokolowski, M. B., and Kent, C. (1985). Prepupation behaviour inDrosophila: Embedding.Behav. Genet. 15: 155–165.

    Article  PubMed  CAS  Google Scholar 

  • Woodward, C., Alcorta, E., and Carlson, J. (1992). TherdgB gene ofDrosophila: A link between vision and olfaction.J. Neurogenet. 8: 17–31.

    Article  PubMed  Google Scholar 

  • Zipursky, S. L., Venkatesh, T. R., Teplow, D. B., and Benzer, S. (1984). Neuronal development in theDrosophila retina: Monoclonal antibodies as molecular probes.Cell 36: 15–26.

    Article  PubMed  CAS  Google Scholar 

  • Zuker, C. S. (1992). Phototransduction inDrosophila: A paradigm for the genetic dissection of sensory transduction cascades.Curr. Opin. Neurobio. 2: 622–627.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawin, E.P., Harris, L.R., Campos, A.R. et al. Sensorimotor transformation from light reception to phototactic behavior inDrosophila larvae (Diptera: Drosophilidae). J Insect Behav 7, 553–567 (1994). https://doi.org/10.1007/BF02025449

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02025449

Key words

Navigation