Skip to main content
Log in

Membrane receptors for estrogen, progesterone, and testosterone in the rat brain: Fantasy or reality

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

1. There are numerous circumstantial evidence supporting the concept that steroid hormones control cellular function by means other than the nuclear receptor steroid binding mechanism. It is the intent of this report to present evidence indicating that steroids bind to specific sites in neuronal membranes.

2. Some of the criteria to define steroid membrane receptors using steroid-BSA conjugates that can be radioiodinated to desired specific activity have been fulfilled for each of the three sex steroids using crude synaptosomal membrane preparations (P2 fractions) from the CNS of female and male rats. Ligand binding for each of the three steroids indicate high-affinity and high-capacity sites with distinct brain selectivity and stereospecificity. For example, 17β-E-6-[125I]BSA binds hypothalamic P2 fractions (HYP-P2) with an estimatedK d of about 3±0.7 nM (X ± SE;n=3), whereas the cerebellum P2 (CB-P2) fractions bind the ligand with aK d of 34±7 nM and, aB max of 3 and 42 pmol/mg protein, respectively. Estrogen and testosterone binding fit best a one-single site, while progesterone binding sites can be best represented by a two-binding site, one high-affinity (K d=1–2 nM) and one low affinity (K d=62 nM), in CB-P2 fractions from intact adult female rat brain. Kinetics studies for T-3-[125I]BSA indicate that the estimatedK d of 30±2 nM for the olfactory bulb P2 fractions (OB-P2) from male rats is in good agreement withK d values computed from Scatchard-derived data using the LIGAND algorithm.

3. 17β-E-6-[125I]BSA binding sites are stereospecific and appears to be present as early as 5 days of age in both the OB- and the CB-P2 fractions without changes during development. In contrast, P-6-[125I]BSA binding sites are practically absent during days 5 and 12 and appear by day 22.

4. Finally, membrane receptor molecules for estrogen and progesterone have been isolated and purified by affinity chromatography and characterized by PAGE and Western blot. Microsequencing of one of the membrane estrogen binding proteins indicates that the high-affinity site corresponds to the OSCP subunit of the proton ATP synthase.

5. It remains to be determined if P and T also bind to this complex enzyme or if they bind to other subunits of the family of proton ATPases. Overall the data indicate that steroid hormones conjugated to BSA are important tools to study the “reality of membrane steroid receptors.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994). Structure at 2.8 Å resolution of F1 ATPase from bovine heart mitochondria.Nature 370621–628.

    PubMed  Google Scholar 

  • Aronica, S. M., Kraus, W. L., and Katzenellenbogen, B. S. (1994). Estrogen action via the cAMP signalling pathway: Stimulation of adenylate cyclase and cAMP-regulated gene transcription.Proc. Natl. Acad. Sci. USA 918517–8521.

    PubMed  Google Scholar 

  • Becker, J. B. (1990a). Estrogen rapidly potentiates amphetamine-induced striatal dopamine release and rotational behavior during microdialysis.Neurosci. Lett. 118169–171.

    PubMed  Google Scholar 

  • Becker, J. B. (1990b). Direct effect of 17β-estradiol on striatum: Sex difference in dopamine release.Synapse 5157–164.

    PubMed  Google Scholar 

  • Blackmore, P. F., and Lattanzio, F. A. (1991a). Cell surface localization of a novel nongenomic progesterone receptor on the head of human sperm.Biochem. Biophys. Res. Commun. 181331–336.

    PubMed  Google Scholar 

  • Blackmore, P. F., Neulen, J., Lattanzio, F., and Beebe, S. J. (1991b). Cell surface-binding sites for progesterone mediate calcium uptake in human sperm.J. Biol. Chem. 26618655–18659.

    PubMed  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72248–252.

    PubMed  Google Scholar 

  • Clark, J. H., and Shailaja, K. M. (1994). Actions of ovarian steroid hormones. InThe Physiology of Reproduction, 2nd ed. (E. Kuobil and J. N. Neil, Eds.), Raven Press, New York, pp. 1011–1059.

    Google Scholar 

  • Di Paolo, T., Rouillard, D. C., and Bedard, P. (1985). 17β-Estradiol at a physiological dose acutely increases dopamine turnover in rat brain.Eur. J. Pharmacol. 117197–203.

    PubMed  Google Scholar 

  • Dluzen, D. E., and Ramirez, V. D. (1991). Modulatory effects of progesterone upon dopamine release from the corpus striatum of ovariectomized estrogen-treated rats are stereospecific.Brain Res. 538176–179

    PubMed  Google Scholar 

  • Dluzen D. E., and Ramirez, V. D. (1990). In vitro progesterone modulation of amphetamine-stimulated dopamine release from the corpus striatum of overiectomized estrogen-treated female rats: Response characteristics.Brain Res. 517117–122.

    PubMed  Google Scholar 

  • Dluzen, D. E., and Ramirez, V. D. (1989). Progesterone effects upon dopamine release from the corpus striatum of female rats. II. Evidence for a membrane site of action and the role of albumin.Brain Res. 476338–344.

    PubMed  Google Scholar 

  • El-Ashry, D., Onate, S. A., Nordeen, S. K., and Edwards, D. P. (1989). Human progesterone receptor complexed with the antagonist R4 486 binds to hormone response elements in a structurally altered form.Mol. Endocrinol. 31545–1558.

    PubMed  Google Scholar 

  • Evans, R. M. (1988). The steroid and thyroid hormone receptor super family.Science 240889–895.

    PubMed  Google Scholar 

  • Frye, C. A., and DeBold, J. F. (1993). P-3-BSA, but not P-11-BSA, implants in the VTA rapidly facilitate receptivity in hamsters after progesterone priming to the VMH.Behavioral Brain Res. 53167–175.

    Google Scholar 

  • Frye, C. A., Mermelstein, P. G., and DeBold, J. F. (1992). Evidence for a non-genomic action of progestins on sexual receptivity in hamster ventral tegmental area but not hypothalamus.Brain Res. 57887–93.

    PubMed  Google Scholar 

  • Garcia-Segura, L. M., Chowen, J. A., Duenas, M., and Naftolin, F. (1995). Hypothalamic syanptic plasticity. Part II: Gliol actions of estrogen.Cellular and Molecular Neurobiology (in press).

  • Garcia-Segura, L. M., Olmos, G., Tranque, P., and Naftolin, F. (1987). Rapid effects of gonadal steroids upon hypothalamic neuronal membrane ultrastructure.J. Steroid Biochem. 27 615–623.

    PubMed  Google Scholar 

  • Higuti, T., Kuroiwa, K., Kawamura, U., Morimoto, K., and Tsujita, H. (1993). Molecular cloning and sequencing of cDNAs for the import precursors of oligomycin sensitivity conferring protein, ATPase inhibitor protein, and subunit C of H+-ATP synthase in rat mitochondria.Biochim. Biophys. Acta 1172311–314.

    PubMed  Google Scholar 

  • Kawakami, M., and Sawyer, C. H. (1959). Neuroendocrine correlates of changes in brain activity thresholds by sex steroids and pituitary hormones.Endocrinology 65652–658.

    PubMed  Google Scholar 

  • Ke, F.-C., and Ramirez, V. D. (1987). Membrane mechanism mediates progesterone stimulatory effect on LHRH release from superfused rat hypothalamiin vitro.Neuroendocrinology 45514–517.

    PubMed  Google Scholar 

  • Ke, F.-C., and Ramirez, V. D. (1990). Binding of progesterone to nerve cell membranes of rat brain using progesterone conjugated to125I-BSA as a ligand.J. Neurochem. 54467–472.

    PubMed  Google Scholar 

  • Kelly, M. J., Moss, R. L., and Dudley, C. A. (1976). Differential sensitivity of preoptic-septal neurons to microelectrophoresed estrogen during the estrous cycle.Brain Res. 114152–157.

    PubMed  Google Scholar 

  • Kelly, M. J., Moss, R. L., Dudley, C. A., and Fawcett, C. P. (1977a). The specificity of the response of preoptic-septal area neurons to estrogen: 17α-Estradiol versus 17β-estradiol and the response of extrahypothalamic neurons.Exp. Brain Res. 3043–52.

    PubMed  Google Scholar 

  • Kelly, M. J., Moss, R. L., and Dudley, C. A. (1977b). The effects of microelectrophoretically applied estrogen, cortisol and acetylcholine on medial preoptic-septal unit activity throughout the estrous cycle of the female rat.Exp. Brain Res. 3053–64.

    PubMed  Google Scholar 

  • Kubli-Garfias, C. (1987). Modulatory action of 5-reduced androgens and progestins on the excitability of CNS and smooth muscle.J. Steroid Biochem. 27631–634.

    PubMed  Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227680–685.

    PubMed  Google Scholar 

  • Lieberherr, M., Grosse, B., Kachkache, M., and Balsan, S. (1993). Cell signaling and estrogens in female rat osteoblasts: A possible involvement of unconventional nonnuclear receptors.J. Bone Mineral Res. 81365–1376.

    Google Scholar 

  • MacLusky, N. J., Lieberburg, I., and McEwen, B. S. (1979). The development of estrogen receptor systems in the rat brain: Perinatal development.Brain Res. 178129–142.

    PubMed  Google Scholar 

  • Majewska, M. D., Harrison, N. L., Schwartz, R. D., Barker, J. L., and Paul, S. M. (1986). Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor.Science 2321004–1007.

    PubMed  Google Scholar 

  • Matsudaira, P. (1987). Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes.J. Biol. Chem. 26110035–10038.

    Google Scholar 

  • McEnery, M. W., Hullihen, J., and Pedersen, P. L. (1989). FO “proton channel” of rat liver mitochondria.J. Biol. Chem. 26412029–12036.

    PubMed  Google Scholar 

  • Medeiros, D. M., Whiry, L., Lincoln, A. J., and Prochaska, L. J. (1993). Cardiac nonmyofibrillar proteins in copper-deficient rats: Amino acid sequencing and Western blotting of altered proteins.Biol. Trace Element Res. 36271–282.

    Google Scholar 

  • Meiri, H. (1986). Is synaptic transmission modulated by progesterone?Brain Res. 385193–196.

    PubMed  Google Scholar 

  • Meizel, S., and Turner, K. O. (1991). Progesterone acts at the plasma membrane of human sperm.Mol. Cell. Endocrinol. 11R1-R5.

    Google Scholar 

  • Mermelstein, P. G., Becker, J. B., and Surmeier, D. J. (1994). 17β-Estradiol modulation of calcium channels in rat striatal neurons.Neuroscience Meeting, Abstr. 47.1, p. 100.

  • Morissette, M., Garcia-Segura, L. H., Belanger, A., and DiPaolo, T. (1992). Changes of rat striatal neuronal membrane morphology and steroid content during the estrous cycle.Neuroscience 49839–902.

    Google Scholar 

  • Moss, R. L., and Dudley, C. A. (1984). Molecular aspects of the interaction between estrogen and the membrane excitability of hypothalamic nerve cells.Prog. Brain Res. 613–22.

    PubMed  Google Scholar 

  • Munson, P. J., and Rodbard, D. (1980). LIGAND: A versatile computerized approach for characterization of ligand-binding systems.Anal. Biochem. 107220–239.

    PubMed  Google Scholar 

  • Pedersen, P. L., and Amzel, L. M. (1993). ATP synthases.J. Biol. Chem. 2689937–9940.

    PubMed  Google Scholar 

  • Pietras, R. J., and Szego, C. M. (1975). Endometrial cell calcium and oestrogen action.Nature 253357–359.

    PubMed  Google Scholar 

  • Pietras, R. J., and Szego, C. M. (1977). Specific binding sites for oestrogen at the outer surfaces of isolated endometrial cells.Nature 26569–72.

    PubMed  Google Scholar 

  • Pietras, R. J., and Szego, C. M. (1979). Estrogen receptors in uterine plasma membrane.J. Steroid Biochem. 11471–1483.

    Google Scholar 

  • Ramirez, V. D. (1992). Characterization of membrane action of steroids.Neuroprotocols Comp. Methods Neurosci. 135–41.

    Google Scholar 

  • Ramirez, V. D., Dluzen, D. E., and Ke, F. C. (1990). Effect of progesterone and its metabolites on neuronal membranes. InSteroids and Neuronal Activity (D. Chadwick and K. Widdows, Eds.), John Wiley and Sons, New York, pp. 125–144.

    Google Scholar 

  • Smith, S. S., Waterhouse, B. D., and Woodward, D. J. (1987). Sex steroid effects on extrahypothalamic CNS. 1. Estrogen augments neuronal responsiveness to iontophoretically applied glutamate in the cerebellum.Brain Res. 42240–51.

    PubMed  Google Scholar 

  • Smith, S. S., Waterhouse, B. D., and Woodward, D. J. (1988). Locally applied estrogens potentiate glutamate-evoked excitation of cerebellar Purkinje cells.Brain Res. 475272–282.

    PubMed  Google Scholar 

  • Sudo, K., Monsma, F. J., and Katzenellenbogen, B. S. (1983). Antiestrogen binding sites distinct from the estrogen receptor: Subcellular localization, ligand specificity, and distribution in tissues of the rat.Endocrinology 112425–434.

    PubMed  Google Scholar 

  • Tesarik, J., Moos, J., and Mendoza, C. (1993). Stimulation of protein tyrosine phosphorylation by a progesterone receptor on the cell surface of human sperm.Endocrinology 133328–335.

    PubMed  Google Scholar 

  • Teyler, T. J., Foy, M., and Vardaris, R. M. (1979). Modulation of hippocampal excitability in adult castrated and ovariectomized rats.Soc. Neurosci. Abstr. 5461.

    Google Scholar 

  • Tischkau, S. A., and Ramirez, V. D. (1993). A specific membrane binding protein for progesterone in rat brain: Sex difference and induction by estrogen.Proc. Natl. Acad. Sci. USA 901285–1289.

    PubMed  Google Scholar 

  • Towbin, H., Stachelin, R., and Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets.Proc. Natl. Acad. Sci. USA 764350–4354.

    PubMed  Google Scholar 

  • Towle, A. C., and Sze, P. Y. (1983). Steroid binding to synaptic plasma membrane: Differential binding of glucocorticoids and gonadal steroids.J. Steroid Biochem. 18135–143.

    PubMed  Google Scholar 

  • Whitehead, S. A., and Ruf, K. B. (1974). Responses of antidromically identified preoptic neurons in the rat to neurotransmitters and to estrogen.Brain Res. 79185–198.

    PubMed  Google Scholar 

  • Wolley, D. E., and Timiras, P. S. (1962). The gonad-brain relationship: Effects of female sex hormones on electroshock convulsions in the rat.Endocrinology 70196–209.

    PubMed  Google Scholar 

  • Yagi, K. (1973). Changes in firing rates of single preoptic and hypothalamic units following an intravenous administration of estrogen in the castrated female rat.Brain Res. 53343–352.

    PubMed  Google Scholar 

  • Yamada, Y., and Nishida, E. (1978). Effects of estrogen and adrenal androgen on unit activity of the rat brain.Brain Res. 142187–190.

    PubMed  Google Scholar 

  • Zheng, J., and Ramirez, V. D. (1996). Identification of a stereospecific membrane 17β-estradiol binding protein in the rat brain as a subunit of the mitochondrial F0F1 ATP-synthase/ATPase alternative (PNAS, under revision).

  • Zheng, J., Ali, A., and Ramirez, V. D. (1996). The use of steroids conjugated to bovine serum albumin (BSA) as tools to demonstrate the existence of specific steroid neuronal membrane binding sites.J. Psychiatry Neurosci. (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramirez, V.D., Zheng, J. & Siddique, K.M. Membrane receptors for estrogen, progesterone, and testosterone in the rat brain: Fantasy or reality. Cell Mol Neurobiol 16, 175–198 (1996). https://doi.org/10.1007/BF02088175

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02088175

Key words

Navigation