Skip to main content
Log in

Evidence that the ability to respond to a calcium stimulus in exocytosis is determined by the secretory granule membrane: Comparison of exocytosis of injected bovine chromaffin granule membranes and endogenous cortical granules inXenopus laevis oocytes

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

1. To understand better the mechanisms which govern the sensitivity of secretory vesicles to a calcium stimulus, we compared the abilities of injected chromaffin granule membranes and of endogenous cortical granules to undergo exocytosis inXenopus laevis oocytes and eggs in response to cytosolic Ca2+. Exocytosis of chromaffin granule membranes was detected by the appearance of dopamine-β-hydroxylase of the chromaffin granule membrane in the oocyte or egg plasma membrane. Cortical granule exocytosis was detected by release of cortical granule lectin, a soluble constituent of cortical granules, from individual cells.

2. Injected chromaffin granule membranes undergo exocytosis equally well in frog oocytes and eggs in response to a rise in cytosolic Ca2+ induced by incubation with ionomycin.

3. Elevated Ca2+ triggered cortical granule exocytosis in eggs but not in oocytes.

4. Injected chromaffin granule membranes do not contribute factors to the oocyte that allow calcium-dependent exocytosis of the endogenous cortical granules.

5. Protein kinase C activation by phorbol esters stimulates cortical granule exocytosis in bothXenopus laevis oocytes andX. laevis eggs (Bement, W. M., and Capco, D. G.,J. Cell Biol. 108, 885–892, 1989). Activation of protein kinase C by phorbol ester also stimulated chromaffin granule membrane exocytosis in oocytes, indicating that although cortical granules and chromaffin granule membranes differ in calcium responsiveness, PKC activation is an effective secretory stimulus for both.

6. These results suggest that structural or biochemical characteristics of the chromaffin granule membrane result in its ability to respond to a Ca2+ stimulus. In the oocytes, cortical granule components necessary for Ca2+-dependent exocytosis may be missing, nonfunctional, or unable to couple to the Ca2+ stimulus and downstream events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ali, S. M., Geisow, M. J., and Burgoyne, R. D. (1989). A role for calpactin in calcium-dependent exocytosis in adrenal chromaffin cells.Nature 340:313–315.

    PubMed  Google Scholar 

  • Augustine, G. J., Charlton, M. P., and Smith, S. J. (1987). Calcium action in synaptic transmitter release.Annu. Rev. Neurosci. 10:633–693.

    PubMed  Google Scholar 

  • Bement, W. M. (1992) Signal transduction by calcium and protein kinase C during egg activation.J. Exp. Zool. 263:382–397.

    PubMed  Google Scholar 

  • Bement, W. M., and Capco, D. G. (1989). Activators of protein kinase C trigger cortical granule exocytosis, cortical contraction, and cleavage furrow formation inXenopus laevis oocytes and eggs.J. Cell Biol. 108:885–892.

    PubMed  Google Scholar 

  • Bement, W. M., and Capco, D. G. (1990). Transformation of the amphibian oocyte into the egg: Strudtural and biochemical events.J. Electron Microsc. Techn. 16:202–234.

    Google Scholar 

  • Bittner, M. A., and Holz, R. W. (1992). Kinetic analysis of secretion from permeabilized adrenal chromaffin cells reveals distinct components.J. Biol. Chem. 267:16219–16225.

    PubMed  Google Scholar 

  • Bommert, K., Charlton, M. P., DeBello, W. M., Chin, G. J., Betz, H., and Augustine, G. J. (1993). Inhibition of neurotransmitter release by C2-domain peptides implicates synaptotagmin in exocytosis.Nature 363:163–165.

    PubMed  Google Scholar 

  • Brose, N., Petrenko, A. G., Südhof, T. C., and Jahn, R. (1992). Synaptotagmin: A calcium sensor on the synaptic vesicle surface.Science 256:1021–1025.

    PubMed  Google Scholar 

  • Busa, W. B., and Nuccitelli, R. (1985). An elevated free cytosolic Ca2+ wave follows fertilization in eggs of the frog,Xenopus laevis.J. Cell Biol. 100:1325–1329.

    PubMed  Google Scholar 

  • Busa, W. B., Ferguson, J. E., Joseph, S. K., Williamson, J. R., and Nuccitelli, R. (1985). Activation of frog (Xenopus laevis) eggs by inositol trisphosphate. I. Characterization of Ca2+ release from intracellular stores.J. Cell Biol. 101:677–682.

    PubMed  Google Scholar 

  • Charbonneau, M., and Grey, R. D. (1984). The onset of activation responsiveness during maturation coincides with the formation of the cortical endoplasmic reticulum in oocytes ofXenopus laevis.Dev. Biol. 102:90–97.

    PubMed  Google Scholar 

  • Childs, R. E., and Bardsley, W. G. (1975). The steady-state kinetics of peroxidase with 2,2′-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as chromogen.Biochem. J. 145:93–103.

    PubMed  Google Scholar 

  • Dunn, L. A., and Holz, R. W. (1983). Catecholamine secretion from digitonin-treated adrenal medullary chromaffin cells.J. Biol. Chem. 258:4989–4993.

    PubMed  Google Scholar 

  • Elferink, L. A., Peterson, M. R., and Scheller, R. H. (1993). A role for synaptotagmin (p65) in regulated exocytosis.Cell 72:153–159.

    PubMed  Google Scholar 

  • Elinson, R. P. (1986). Fertilization in amphibians: The ancestry of the block to polyspermy.Int. Rev. Cytol. 101:59–100.

    PubMed  Google Scholar 

  • Engvall, E. (1980). Enzyme immunoassay ELISA and EMIT.Methods Enzymol. 70:419–438.

    PubMed  Google Scholar 

  • Grey, R. D., Wolf, D. P., and Hedrick, J. L. (1974). Formation and structure of the fertilization envelope inXenopus laevis.Dev. Biol. 36:44–61.

    PubMed  Google Scholar 

  • Iwao, Y. (1982). Differential emergence of cortical granule breakdown and electrophysiological responses during meiotic maturation of toad oocytes.Dev. Growth Differ. 24:467–477.

    Google Scholar 

  • Kishida, S., Shiratiki, H., Sasaki, T., Kato, M., Kaibuchi, K., and Takai, Y. (1993).Rab3a GTPase-activating protein-inhibiting activity of Rabphilin-3a, a putativeRab3A target protein.J. Biol. Chem. 268:22259–22261.

    PubMed  Google Scholar 

  • Kubota, H. Y., Yoshimoto, Y., Yoneda, M., and Hiramoto, Y. (1987). Free calcium wave upon activation in Xenopus eggs.Dev. Biol. 119:129–136.

    PubMed  Google Scholar 

  • Makinen, K. K., and Tenovuo, J. (1982). Observations on the use of guaiacol and 2,2′-azino-di(3-ethylbenzhtiazoline-6-sulfonic acid) as peroxidase substrates.Anal. Biochem. 126:100–108.

    PubMed  Google Scholar 

  • McKiernan, C. J., Brondyk, W. H., and Macara, I. G. (1993). The Rab3A GTPase interacts with multiple factors through the same effector domain mutational analysis of cross-linking of Rab3A to a putative target protein.J. Biol Chem. 268:2449–24452.

    Google Scholar 

  • Monk, B. C., and Hedrick, J. L. (1986). The cortical reaction inXenopus laevis eggs: Cortical granule lectin release as determined by radioimmunoassay.Zool. Sci. 3:459–466.

    Google Scholar 

  • Nishihara, T., Wyrick, R. E., Working, P. K., Chen, Y.-H., and Hedrick, J. L. (1986). Isolation and characterization of a lectin from the cortical granules ofXenopus laevis eggs.Biochemistry 25:6013–6020.

    PubMed  Google Scholar 

  • Nishizuka, Y. (1986). Studies and perspectives of protein kinase C.Science 233:305–312.

    PubMed  Google Scholar 

  • Ozawa, K., Szallasi, Z., Kazanietz, M. G., Blumberg, P. M., Mischak, H., Mushinski, J. F., and Beaven, M. A. (1993). Ca2+-dependent and Ca2+-independent isozymes of protein kinase C mediate exocytosis in antigen-stimulated rat basophilic RBL-2H3 cells.J. Biol. Chem. 268:1749–1756.

    PubMed  Google Scholar 

  • Sarafian, T., Pradel, L.-A., Henry, J.-P., Aunis, D., and Bader, M.-F. (1991). The participation of annexin II (calpactin I) in calcium-evoked exocytosis requires protein kinase C.J. Cell Biol. 114:1135–1147.

    PubMed  Google Scholar 

  • Scheuner, D., Logsdon, C. D., and Holz, R. W. (1992). Bovine chromaffin granule membranes undergo Ca2+-regulated exocytosis in frog oocytes.J. Cell Biol. 116:359–365.

    PubMed  Google Scholar 

  • Shindler, J. S., Childs, R. E., and Bardsley, W. G. (1976). Peroxidase from human cervical mucus, the isolation and characterisation.Eur. J. Biochem. 65:325–331.

    PubMed  Google Scholar 

  • Shirataki, H., Kaibuchi, K., Sakoda, T., Kishida, S., Yamaguchi, T., Wada, K., Miyazaki, M., and Takai, Y. (1993). Rabphilin-3A, a putative target protein for smg p25A/rab3A p25 small GTP-binding protein related to synaptotagmin.Mol. Cell. Biol. 13:2061–2068.

    PubMed  Google Scholar 

  • Spearman, T. N., and Butcher, F. R. (1989). Cellular regulation of amylase secretion by the paratid gland. InHandbook of Physiology, Section 6. The Gastrointestinal System (S. G. Schultz, Ed.), American Physiological Society, Bethesda, MD, pp. 63–77.

    Google Scholar 

  • TerBush, D. R., and Holz, R. W. (1990). Activation of protein kinase C is not required for exocytosis from bovine adrenal chromaffin cells: The effects of protein kinase C(19-31), Ca/CaM kinase II(291–317), and staurosporin.J. Biol. Chem. 265:21179–21184.

    PubMed  Google Scholar 

  • Williams, J. A., and Yule, D. I. (1993). Stimulus-secretion coupling in pancreatic acinar cells. InThe Pancreas: Biology, Pathobiology and Disease, 2nd ed (V. L. W. Go, Ed), Raven Press, New York, pp. 167–189.

    Google Scholar 

  • Willams, J. A., Burham, D. B., and Hootman, S. R. (1989). Cellular regulation of pancreatic secretion. InHandbook of Physiology, Section 6. The Gastrointestinal System (S. G. Schulz, Ed.), American Physiological Society, Bethesda, MD, pp. 419–441.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheuner, D., Holz, R.W. Evidence that the ability to respond to a calcium stimulus in exocytosis is determined by the secretory granule membrane: Comparison of exocytosis of injected bovine chromaffin granule membranes and endogenous cortical granules inXenopus laevis oocytes. Cell Mol Neurobiol 14, 245–257 (1994). https://doi.org/10.1007/BF02088323

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02088323

Key words

Navigation