Skip to main content
Log in

Evidence for site selection during synaptogenesis: The surface distribution of synaptic sites in photoreceptor terminals of the fliesMusca andDrosophila

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    Photoreceptor terminals in the fliesMusca domestica andDrosophila melanogaster have been reconstructed in three dimensions from serial EM to reveal the surface distributions of afferent tetrad synapses.

  2. 2.

    The terminals are cylindrical and surround two target cells; they have synaptic sites distributed along their length and around their circumference, except for a strip along the face that lies furthest away from the target cells.

  3. 3.

    Over their inner faces, the terminals have presynaptic sites that are distributed evenly.

  4. 4.

    The distribution of sites in maps plotted from reconstructed membrane surfaces was examined by quadrat analyses. The frequency of sites per quadrat division was not Poissonian, i.e. was non-random. Thus, some form of site selection must exist during synaptogenesis.

  5. 5.

    The sites were shown by variance ratio analysis to be regular (evenly dispersed, not clustered). This suggests that some form of interaction exists, so as to reduce the probability that a synapse will form close to an already existing synaptic site.

  6. 6.

    Distances between nearest-neighbour pairs of synapses had a closest minimum spacing of about 0.8 μm inMusca that was violated by about 5% of pairs, whereas the corresponding distances were about 0.2 μm shorter inDrosophila, which had 13% of pairs situated closer together than 0.8 μm.

  7. 7.

    During synaptogenesis, either initially in the pupa or later in the adult, the probability that a synapse will form is therefore effectively zero within these distances from an existing synaptic site, perhaps through an inhibitory influence exerted by the latter. The nearest-neighbour distances are normally distributed.

  8. 8.

    Unlike the distribution of presynaptic sites, the distribution of postsynaptic sites over the surfaces of the dendrites of the target cells is not even. Although not studied in detail, the corresponding nearest-neighbour distances are much smaller, as little as 0.1 μm. Thus the wider spacing seen between sites over the receptor terminals is a function of the presynaptic cells, and not of their postsynaptic partners, and implies the existence of interactions between synaptic sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bennett, M. R., and Pettigrew, A. G. (1974). The formation of synapses in straited muscle during development.J. Physiol. 241:515–545.

    Google Scholar 

  • Bennett, M. R., and Pettigrew, A. G. (1976). The formation of neuromuscular synapses.Cold Spring Harbor Symp. Quant. Biol. 40:409–424.

    Google Scholar 

  • Brandstätter, J. H., Shaw, S. R., and Meinertzhagen, I. A. (1991a). Terminal degeneration and synaptic disassembly following receptor photoablation in the retina of the fly's compound eye.J. Neurosci. 11:1930–1941.

    Google Scholar 

  • Brandstätter, J. H., Shaw, S. R., and Meinertzhagen, I. A. (1991b). Invagination of presynaptic ribbons in the fly's optic lobe following loss of their target neuron.Proc. Roy. Soc. Lond. B 245:13–22.

    Google Scholar 

  • Boycott, B. B., and Hopkins, J. M. (1991). Cone bipolar cells and cone synapses in the primate retina.Vis. Neurosci. 7:49–60.

    Google Scholar 

  • Burry, R. W., Kniss, D. A., and Scribner, L. R. (1984). Mechanisms of synapse formation and maturation.Curr. Topics Res. Synapses 1:1–51.

    Google Scholar 

  • Canal, I., Fariñas, I., Gho, M., and Ferrús, A. (1994). The presynaptic cell determines the number of synapses in theDrosophila optic ganglia.Eur. J. Neurosci. 6:1423–1431.

    Google Scholar 

  • Cotman, C. W., and Nieto-Sampedro, M. (1984). Cell biology of synaptic plasticity.Science 225:1287–1294.

    Google Scholar 

  • Cotman, C. W., Nieto-Sampedro, M., and Harris, E. W. (1981). Synapse replacement in the nervous system of adult vertebrates.Physiol. Rev. 61:684–784.

    Google Scholar 

  • Dowling, J. E., and Boycott, B. B. (1966). Organization of the primate retina: electron microscopy.Proc. Roy. Soc. Lond. B 166:80–111.

    Google Scholar 

  • Fischbach, K.-F., and Dittrich, A. P. M. (1989) The optic lobe ofDrosophila melanogaster. I. A Golgi analysis of wild-type structure.Cell Tissue Res. 258:441–475.

    Google Scholar 

  • Florey, E., and Cahill, M. A. (1982). The innervation pattern of crustacean skeletal muscle. Morphometry and ultrastructure of terminals and synapses.Cell Tissue Res. 224:527–541.

    Google Scholar 

  • Fröhlich, A. (1986). Freeze-fracture study of an invertebrate multiple-contact synapse: The fly photoreceptor tetrad.J. Comp. Neurol. 241:311–326.

    Google Scholar 

  • Fröhlich, A. (1996). The making of a neuropile: Preferential adjacency among neurons and its consequences for their synapses. (in preparation).

  • Fröhlich, A., and Meinertzhagen, I. A. (1982). Synaptogenesis in the first optic neuropile of the fly's visual system.J. Neurocytol. 11:159–180.

    Google Scholar 

  • Fröhlich, A., and Meinertzhagen, I. A. (1983). Quantitative features of synapse formation in the fly's visual system. I. The presynaptic photoreceptor terminal.J. Neurosci. 3:2336–2349.

    Google Scholar 

  • Fröhlich, A., and Meinertzhagen, I. A. (1987). Regulation of synaptic frequency: Comparison of the effects of hypoinnervation with those of hyperinnervation in the fly's compound eye.J. Neurobiol. 18:343–357.

    Google Scholar 

  • Gottlieb, D. I., and Cowan, W. M. (1973). Autoradiographic studies of the commissural and ipsilateral associational connections of the hippocampal and dentate gyrus of the rat. I. The commissural connections.J. Comp. Neurol. 149:393–422.

    Google Scholar 

  • Govind, C. K., and Chiang, R. G. (1979). Correlation between presynaptic dense bodies and transmitter output at lobster neuromuscular terminals by serial section electron microscopy.Brain Res. 161:377–388.

    Google Scholar 

  • Hall, Z. W., and Sanes, J. R. (1993). Synaptic structure and development: The neuromuscular junction.Cell 72/Neuron 10:99–121.

    Google Scholar 

  • Hardie, R. C. (1987). Is histamine a neurotransmitter in insect photoreceptors?J. Comp. Physiol. A 161:201–213.

    Google Scholar 

  • Hauser-Holschuh, H. (1975).Vergleichend quantitative Untersuchungen an den Sehganglien der Fliegen Musca domesticaUnd Drosophila melanogaster, Dissertation, Eberhard-Karls-Universität, Tübingen.

    Google Scholar 

  • Hu, X. (1993).Three-Dimensional Reconstruction of Optic Lobe Interneurons and Their Synapses in the Flies Muscaand Drosophila, M.Sc. thesis, Department of Biology, Dalhousie University, Halifax.

    Google Scholar 

  • Kelly, R. B. (1993). Storage and release of neurotransmitters.Cell 72/Neuron 10 (Suppl.):43–53.

    Google Scholar 

  • Kershaw, K. A., and Looney, J. H. (1985).Quantitative and Dynamic Plant Ecology, Edward Arnold, London.

    Google Scholar 

  • Koenig, J. H., and Ikeda, K. (1989). Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval.J. Neurosci. 9:3844–3860.

    Google Scholar 

  • Kuffler, D., Thompson, W., and Jansen, J. K. S. (1977). The elimination of synapses in multiply-innervated skeletal muscle fibres of the rat: Dependence on distance between end-plates.Brain Res. 138:353–358.

    Google Scholar 

  • Laughlin, S. B. (1973). Neural integration in the first optic neuropile of dragonflies I. Signal amplification in dark-adapted second-order neurons.J. Comp. Physiol. 84:335–355.

    Google Scholar 

  • Laughlin, S. B., Howard, J., and Blakeslee, B. (1987). Synaptic limitations to contrast coding in the retina of the blowflyCalliphora.Proc. Roy. Soc. Lond. B 231:437–467.

    Google Scholar 

  • Lavidis, N. A., and Bennett, M. R. (1992). Probabilistic secretion of quanta from visualized sympathetic nerve varicosities in mouse vas deferens.J. Physiol. 454:9–26.

    Google Scholar 

  • Lømo, T., and Jansen, J. K. S. (1980). Requirements for the formation and maintenance of neuromuscular connections. InNeural Development, Part II (R. K. Hunt, Ed.), Academic Press, New York, pp. 253–281.

    Google Scholar 

  • Mariani, J., and Changeux, J.-P. (1981). Ontogenesis of olivocerebellar relationships I. Studies by intracellular recordings of the multiple innervation of Purkinje cells by climbing fibers in the developing rat cerebellum.J. Neursoci. 1:696–702.

    Google Scholar 

  • Meinertzhagen, I. A. (1984). The rules of synaptic assembly in the developing insect lamina. InPhotoreception and Vision in Invertebrates (M. A. Ali, Ed.), NATO Advanced Science Institute, Vol. 74, Plenum Press, New York, pp. 635–660.

    Google Scholar 

  • Meinertzhagen, I. A. (1989). Fly photoreceptor synapses: Their development, evolution, and plasticity.J. Neurobiol. 20:276–294.

    Google Scholar 

  • Meinertzhagen, I. A. (1993). The synaptic populations of the fly's optic neuropil and their dymamic regulation: Parallels with the vertebrate retina.Prog. Retinal Res. 12:13–39.

    Google Scholar 

  • Meinertzhagen, I. A. (1994). The early causal influence of cell size upon synaptic number: The mutantgigas ofDrosophila.J. Neurogenet. 9:157–176.

    Google Scholar 

  • Meinertzhagen, I. A., and Fröhlich, A. (1983). The regulation of synapse formation in the fly's visual system.Trends Neurosci. 6:223–228.

    Google Scholar 

  • Meinertzhagen, I. A., and Hanson, T. E. (1993). The development of the optic lobe. InThe Development of Drosophila melanogaster (M. Bate and A. Martinez Arias, Eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 1363–1491.

    Google Scholar 

  • Meinertzhagen, I. A., and O'Neil, S. D. (1991). Synaptic organization of columnar elements in the lamina of the wild type inDrosophila melanogasten.J. Comp. Neurol. 305:232–263.

    Google Scholar 

  • Nicol, D., and Meinertzhagen, I. A. (1982). An analysis of the number and composition of the synaptic populations formed by photoreceptors of the fly.J. Comp. Neurol. 207:29–44.

    Google Scholar 

  • Palay, S. L. and Chan-Palay, V. (1974).Cerebellar Cortex: Cytology and Organization, Springer-Verlag, New York.

    Google Scholar 

  • Raisman, G. (1985). Synapse formation in the septal nuclei of adult rats. InSynaptic Plasticity (C. W. Cotman, Ed.), Guilford Press, New York, pp. 13–38.

    Google Scholar 

  • Rao, R., Buchsbaum, G., and Sterling, P. (1994). Rate of quantal transmitter release at the mammalian rod synapse.Biophys. J. 67:57–63.

    Google Scholar 

  • Ramaswami, M., Krishman, K. S., and Kelly, R. B. (1994). Intermediates in synaptic vesicle recycling revealed by optical imaging of Drosophila neuromuscular junctions.Neuron 13:363–375.

    Google Scholar 

  • Raviola, E., and Gilula, N. B. (1975). Intramembrane organization of specialized contacts in the outer plexiform layer of the retina: A freeze-fracture study in monkeys and rabbits.J. Cell Biol. 65:192–222.

    Google Scholar 

  • Ribchester, R. R., and Barry, J. A. (1994). Spatialversus consumptive competition at polyneuronally innervated neuromuscular junctions.Exp. Physiol. 79:465–494.

    Google Scholar 

  • Ribi, W. A. (1976). A Golgi-electron microscope method for insect nervous tissue.Stain Technol. 51:13–16.

    Google Scholar 

  • Ryan, T. A., Joiner, B. L., and Ryan, B. F. (1976).Minitab Student Handbook, Duxbury Press, North Scituate, MA.

    Google Scholar 

  • Rybak, J., and Meinertzhagen, I. A. (1996). The effects of light reversals on photoreceptor synaptogenesis.Europ. J. Neurosci. (submitted).

  • Saint Marie, R. L., and Carlson, S. D. (1982). Synaptic vesicle activity in stimulated and unstimulated photoreceptor axons in the housefly. A freeze-fracture study.J. Neurocytol. 11:747–761.

    Google Scholar 

  • Sargent, P. B. (1983). The number of synaptic boutons terminating onXenopus cardiac ganglion cells is directly correlated with cell size.J. Physiol. 343:85–104.

    Google Scholar 

  • Sterling, P. (1990). Retina. InThe Synaptic Organization of the Brain, 3rd ed., Oxford University Press, New York, pp. 170–213.

    Google Scholar 

  • Strausfeld, N. J., and Nässel, D. R. (1981). Neuroarchitectures serving compound eyes of Crustacea and insects. InHandbook of Senory Physiology, Vol. VII/6B. Comparative Physiology and Evolution of Vision in Invertebrates (H. Autrum, Ed.), Springer-Verlag, Berlin, pp. 1–132.

    Google Scholar 

  • Streichert, L. C., and Sargent, P. B. (1989). Bouton ultrastructure and synaptic growth in a frog autonomic ganglion.J. Comp. Neurol. 281:159–168.

    Google Scholar 

  • Trimble, W. S., Linial, M., and Scheller, R. H. (1991). Cellular and molecular biology of the presynaptic nerve terminal.Annu. Rev. Neurosci. 14:93–122.

    Google Scholar 

  • White, J. G. (1985). Neuronal connectivity inCaenorhabditis elegans.Trends Neurosci. 8:277–283.

    Google Scholar 

  • Winslow, J. L., Cooper, R. L., Govind, C. K., Pearce, J., Marin, L., and Atwood, H. L. (1994). Close presynaptic active zones may enhance facilitation.Soc. Neurosci. Abstr. 20:1339.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meinertzhagen, I.A., Hu, X. Evidence for site selection during synaptogenesis: The surface distribution of synaptic sites in photoreceptor terminals of the fliesMusca andDrosophila . Cell Mol Neurobiol 16, 677–698 (1996). https://doi.org/10.1007/BF02151904

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02151904

Key Words

Navigation