Skip to main content
Log in

D1 dopamine receptor binding in mood disorders measured by positron emission tomography

  • Original Investigations
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

D1 dopamine receptor binding in mood disorders was studied by positron emission tomography (PET) using11C-SCH23390. Ten patients with bipolar mood disorders and 21 normal controls were studied in the drug-free state. The patients were in euthymic (N=6), depressed (N=3) and manic (N=1) states. Regional radioactivity in the brain was followed for 40 min by PET. A two-compartment model was used to obtain the binding potential (k3/k4) for the striatum and frontal cortex. The binding potentials for the frontal cortex for the patients were significantly lower than those for normal controls, whereas those for striatum were not significantly different. These findings suggest that D1 dopamine receptors in the frontal cortex may be in a different state in patients with bipolar mood disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andersen PH, Braestrup C (1986) Evidence for different states of the dopamine D1 receptor: clozapine and fluperlapine may preferentially label an adenylate cyclase-coupled state of the D1 receptor. J Neurochem 47:1822–1831

    Google Scholar 

  • Andersen PH, Grønvald FC (1986) Specific binding of3H-SCH23390 to dopamine D1 receptors in vivo. Life Sci 38:1507–1514

    Google Scholar 

  • Andersen PH, Gingrich JA, Bates MD, Dearry A, Falardeau P, Senogles SE, Caron MG (1990) Dopamine receptor subtypes: beyond the D1/D2 classification. TIPS 11:231–236

    Google Scholar 

  • Antelman SM, Caggiula AR (1977) Norepinephrine-dopamine interaction and behavior. Science 195:646–653

    Google Scholar 

  • Baxter LR Jr, Phelps ME, Mazziotta JC, Schwartz JM, Gerner RH, Selin CE, Sumida RM (1985) Cerebral metabolic rate for glucose in mood disorders. Arch Gen Psychiatry 42:441–447

    Google Scholar 

  • Bischoff S, Heinrich M, Sonntag JM, Krauss J (1986) The D-1 dopamine receptor antagonist SCH23390 also interacts potently with brain serotonin (5-HT2) receptors. Eur J Pharmacol 129:367–370

    Google Scholar 

  • Brière R, Diop L, Gottberg E, Grondin L, Reader T (1987) Stereospecific binding of a new benzazepine, [3H]SCH23390, in cortex and neostriatum. Can J Physiol Pharmacol 65:1507–1511

    Google Scholar 

  • Chugani DC, Ackermann RF, Phelps ME (1988) In vivo [3H]spiperone binding: evidence for accumulation in corpus striatum by agonist-mediated receptor internalization. J Cereb Blood Flow Metab 8:291–303

    Google Scholar 

  • Cortés R, Gueye B, Pazos A, Probst A, Palacios JM (1989) Dopamine receptors in human brain: autoradiographic distribution of D1 sites. Neuroscience 28:263–273

    Google Scholar 

  • Dawson TM, Mccabe RT, Stensaas SS, Wamsley JK (1987) Autoradiographic evidence of [3H]SCH23390 binding sites in human prefrontal cortex (Brodmann's area 9). J Neurochem 49:789–796

    Google Scholar 

  • De Keyser J, Claeys A, De Backer JP, Ebinger G, Roels F, Vauquelin G (1988) Autoradiographic localization of D1 and D2 dopamine receptors in the human brain. Neurosci Lett 91:142–147

    Google Scholar 

  • De Montis GM, Devoto P, Gessa GL, Meloni D, Porcella A, Saba P, Serra G, Tagliamonte A (1989) Chronic imipramine reduces [3H]SCH23390 binding and DA-sensitive adenylate cyclase in the limbic system. Eur J Pharmacol 167:299–303

    Google Scholar 

  • Eckernâs S-A, Aquilonius SM, Hartvig P, Hagglund J, Lundqvist H, Nagren K, Långström B (1987) Positron emission tomography (PET) in the primate brain: evaluation of a kinetic model using11C-N-methyl-spiperone. Acta Neurol Scand 75:168–178

    Google Scholar 

  • Farde L, Halldin C, Stone-Elander S, Sedvall G (1987) PET analysis of human dopamine receptor subtypes using11C-SCH23390 and11C-raclopride. Psychopharmacology 92:278–284

    Google Scholar 

  • Fibiger HC, Phillips AG (1981) Increased intracranial self-stimulation in rats after long-term administration of desipramine. Science 214:683–685

    Google Scholar 

  • Frost JJ, Smith AC, Kuhar MJ, Dannals RF, Wagner HN Jr (1987) In vivo binding of3H-N-methylspiperone to dopamine and serotonin receptors. Life Sci 40:987–995

    Google Scholar 

  • Gershon ES, Berrettini W, Nurnberger J Jr, Goldin LR (1987) Genetics of affective illness. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven Press, New York, pp 481–491

    Google Scholar 

  • Hall H, Farde L, Sedvall G (1988) Human dopamine receptor subtypes-in vitro binding analysis using3H-SCH23390 and3H-raclopride. J Neural Transm 73:7–21

    Google Scholar 

  • Klimek V, Nielsen M (1987) Chronic between with antidepressants decreases the number of [3H]SCH23390 binding sites in the rat striatum and limbic system. Eur J Pharmacol 139:163–169

    Google Scholar 

  • Koyama T (1987) The effect of lithium treatment on activity of central dopaminergic neurons. Hokkaido-Igaku-Zasshi 62:402–416

    Google Scholar 

  • Lundberg T, Lindstöm LH, Hartvig P, Eckernâs SA, Ekblom B, Lundqvist H, Fasth KJ, Gullberg P, Långström B (1989) Striatal and frontal cortex binding of 11-C-labelled clozapine visualized by positron emission tomography (PET) in drug-free schizophrenics and healthy volunteers. Psychopharmacology 99:8–12

    Google Scholar 

  • Maj J, Rogz Z, Skuza G, Sowinska H (1984) Repeated between with antidepressant drugs increases the behavioural response to apomorphine. J Neural Transm 60:273–282

    Google Scholar 

  • Maj J, Wędzony K, Klimek V (1987) Desipramine given repeatedly enhances behavioural effect of dopamine andd-amphetamine injected into the nucleus accumbens. Eur J Pharmacol 140:179–185

    Google Scholar 

  • Matui T, Hirano A (1977) An atlas of the human brain for computerized tomography. Igaku Shoin, Tokyo

    Google Scholar 

  • Mintun MA, Raichle ME, Kilbourn MR, Wooten GF, Welch M (1984) A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol 15:217–227

    Google Scholar 

  • Nowak G, Zak J (1989) Repeated electroconvulsive shock (ECS) enhances striatal D-1 dopamine receptor turnover in rat. Eur J Pharmacol 167:307–308

    Google Scholar 

  • Serra G, Collu M, D'Aquila PS, De Montis GM, Gessa GL (1990) Possible role of dopamine D1 receptor in the behavioural supersensitivity to dopamine agonists induced by chronic treatment with antidepressants. Brain Res 527:234–243

    Google Scholar 

  • Silverstone T (1985) Dopamine in manic depressive illness: a pharmacological synthesis. J Affective Disord 8:225–231

    Google Scholar 

  • Spyraki C, Fibiger HC (1981) Behavioural evidence for supersensitivity of postsynaptic dopamine receptors in the mesolimbic system after chronic administration of desipramine. Eur J Pharmacol 74:195–206

    Google Scholar 

  • Suhara T, Inoue O, Kobayasi K (1990) Effect of desipramine on dopamine receptor binding in vivo. Life Sci 47:2119–2126

    Google Scholar 

  • Suhara T, Fukuda H, Inoue O, Itoh T, Suzuki K, Yamasaki T, Tateno Y (1991) Age-related changes in human D1 dopamine receptors measured by positron emission tomography. Psychopharmacology 103:41–45

    Google Scholar 

  • Takami K, Ueda K, Okajima K, Tanaka E, Nohara N, Tomitani T, Murayama H, Shishido F, Ishimatu K, Ohgushi S, Inoue Y, Takakusa Y, Hayashi T, Nakase S (1983) Performance study of whole-body, multislice positron computed tomograph-positrosica II. IEEE Trans Nucl Sci NS-30:734–738

    Google Scholar 

  • Tassin JP, Studler JM, Herve D, Blanc G, Glowinski J (1986) Contribution of noradrenergic neurons to the regulation of dopaminergic (D1) receptor denervation supersensitivity in rat prefrontal cortex. J Neurochem 46:243–248

    Google Scholar 

  • Undie AS, Friedman E (1990) Stimulation of a dopamine D1 receptor enhances inositol phosphates formation in rat brain. J Pharmacol Exp Ther 253:987–992

    Google Scholar 

  • Wachtel H (1989) Dysbalance of neural second messenger function in the aetiology of affective disorders: a pathophysiological concept hypothesising defects beyond first messenger receptors. J Neural Transm 75:21–29

    Google Scholar 

  • Whitaker-Azmitia PM, Molino LJ, Caruso J, Shemer AV (1990) Serotonergic agents restore appropriate decision-making in neonatal rats displaying dopamine D1 receptor-mediated vacillatory behavior. Eur J Pharmacol 180:305–309

    Google Scholar 

  • Willner P (1983) Dopamine and depression: a review of recent evidence. Brain Res Rev 6:211–246

    Google Scholar 

  • Wong DF, Wagner HN Jr, Pearlson G, Dannals RF, Links JM, Ravert HT, Wilson AA, Suneja S, Bjorvvinssen E, Kuhar MJ, Tune L (1985) Dopamine receptor binding of C-11-3-N-methylspiperone in the caudate in schizophrenia and bipolar disorder: a preliminary report. Psychopharmacol Bull 21:595–598

    Google Scholar 

  • Wong DF, Pearlson G, Ross C, Tune L, Villemagne V, Dannals RF, Links J, Ravert H, Wilson A, Kuhar M, Wagner HN Jr, Gjedde A (1987) In vivo measurement of D2 dopamine receptor abnormalities in drug naive and drug free manic-depressive patients. Soc Neurosci Abstr 13:261

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suhara, T., Nakayama, K., Inoue, O. et al. D1 dopamine receptor binding in mood disorders measured by positron emission tomography. Psychopharmacology 106, 14–18 (1992). https://doi.org/10.1007/BF02253582

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02253582

Key words

Navigation