Skip to main content
Log in

Ultrastructural changes in the hippocampal CA1 region following transient cerebral ischemia: evidence against programmed cell death

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

The ultrastructural changes in the pyramidal neurons of the CA1 region of the hippocampus were studied 6 h, 24 h, 48 h, and 72 h following a transient 10 min period of cerebral ischemia induced by common carotid occlusion combined with hypotension. The pyramidal neurons showed delayed neuronal death (DND), i.e. at 24 h and 48 h postischemia few structural alterations were noted in the light microscope, while at 72 h extensive neuronal degeneration was apparent. The most prominent early ultrastructural changes were polysome disaggregation, and the appearance of electron-dense fluffy dark material associated with tubular saccules. Mitochondria and nuclear elements appeared intact until frank neuronal degeneration. The dark material accumulated with extended periods of recirculation in soma and in the main trunks of proximal dendrites, often beneath the plasma membrane, less frequently in the distal dendrites and seldom in spines. Protein synthesis inhibitors (anisomycin, cycloheximide) and an RNA synthesis inhibitor (actinomycin D), administered by intrahippocampal injections or subcutanously, did not mitigate neuronal damage. Therefore, DND is probably not apoptosis or a form of programmed cell death. We propose that the dark material accumulating in the postischemic period represents protein complexes, possibly aggregates of proteins or internalized plasma membrane fragments, which may disrupt vital cellular structure and functions, leading to cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DND:

delayed neuronal death

ER:

endoplasmic reticulum

GA:

Golgi apparatus

HSP:

heat shock protein

IR:

immunoreactivity

PSD:

postsynaptic density

RNA:

ribonucleic acid

SER:

smooth endoplasmic reticulum

UIR:

ubiquitin immunoreactivity

References

  • Auer RN, Olsson Y, Siesjö BK (1984) Hypoglycemic brain injury in the rat. Correlation of density of brain damage with the EEG isoelectric time: a quantitative study. Diabetes 33:1090–1098

    PubMed  Google Scholar 

  • Angeletti PU, Levi-Montalcini R, Caramia F (1971) Analysis of the effects of the antiserum to the nerve growth factor in adult mice. Brain Res 27:343–355

    Article  PubMed  Google Scholar 

  • Aoki C, John TH, Pickel VM (1987) Ultrastructural localization of β-adrenergic receptor-like immunoreactivity in the cortex and neostriatum of rat brain. Brain Res 437:264–282

    Article  PubMed  Google Scholar 

  • Blomqvist P, Lindvall O, Stenevi U, Wieloch T (1985) Cyclic AMP concentrations in rat neocortex and hippocampus following incomplete ischemia: effects of central noradrenergic neurons, prostaglandins and adenosine. J Neurochem 44:1345–1353

    PubMed  Google Scholar 

  • Brierley JB (1980) Hypoxic brain damage. In: Rose FC, Behan PO (eds) Animal models of neurological disease. Pitman Medical, Tunbridge Wells, pp 338–346

    Google Scholar 

  • Brown AW, Brierley JB (1972) Anoxic-ischeamic cell change in rat brain light microscopic and fine-structural observations. J Neurol Sci 16:59–84

    PubMed  Google Scholar 

  • Brown AW, Levy DE, Kublik M, Harrow J, Plum F, Brierley JB (1979) Selective chromatolysis of neurons in the gerbil brain: A possible consequence of “epileptic” activity produced by common carotid artery occlusion. Ann Neurol 5:127–138

    Article  PubMed  Google Scholar 

  • Bubis JJ, Fujimoto T, Ito U (1976) Experimental cerebral ischaemia in Mongolian gerbils. V. Ultrastructural changes in h 3 sector of the hippocampus. Acta Neuropathol (Berl) 36:285–294

    Google Scholar 

  • Choi DW (1987) Ionic dependence of glutamate neurotoxicity. J Neurosci 7:369–379

    PubMed  Google Scholar 

  • Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634

    Article  PubMed  Google Scholar 

  • Finley D, Varshavsky A (1985) The ubiquitin system: functions and mechanisms. TIBS 9:343–346

    Google Scholar 

  • Garcia JH, Lossinsky AS, Kauffman FC, Conger KA (1978) Neuronal ischemic injury: light microscopy, ultrastructure and biochemistry. Acta Neuropathol (Berl) 43:85–95

    Article  Google Scholar 

  • Gustafson I, Miyauchi Y, Wieloch T (1989) Postischemic administration of Idazoxan, an α-2 adrenergic receptor antagonist, decreases neuronal damage in the rat brain. J Cereb Blood Flow Metab 9:171–174

    PubMed  Google Scholar 

  • Haas AL, Bright PM (1985) The immunochemical detection and quantitation of intracellular ubiquitin-protein conjugates. J Biol Chem 260:12464–12473

    PubMed  Google Scholar 

  • Hagberg H, Lehmann A, Sandberg M, Nyström B, Jacobsson I, Hamberger A (1985) Ischemia induced shift of inhibitory and excitatory amino acids from intra- to extracellular compartments. J Cereb Blood Flow Metab 5:413–419

    PubMed  Google Scholar 

  • Ito U, Spatz M, Walker JT, Klatzo I, (1975) Experimental cerebral ischemia in mongolian gerbils. Acta Neuropathol (Berl) 32:209–223

    Google Scholar 

  • Jørgensen MB, Johansen FF, Diemer NH (1987) Removal of the enthorhinal cortex protects hippocampal CA-1 neurons from ischemic damage. Acta Neuropath (Berl) 73:189–194

    Article  Google Scholar 

  • Kadota T, Kadota K (1979) Filamentous contacts containing subjunctional dense lattice and tubular smooth endoplasmic reticulum in cat lateral geniculate nuclei. Brain Res 177:49–59

    PubMed  Google Scholar 

  • Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69

    Article  PubMed  Google Scholar 

  • Kirino T, Sano K (1984) Fine structural nature of delayed neuronal death following ischemia in the gerbil hippocampus. Acta Neuropathol (Berl) 62:209–218

    Google Scholar 

  • Kirino T, Tamura A, Sano K (1984) Delayed neuronal death in the rat hippocampus following transient forebrain ischemia. Acta Neuropathol (Berl) 64:139–147

    Article  Google Scholar 

  • Kiessling M, Xie Y, Ullrich B, Thilmann R (1991) Are the neuroprotective effects of the protein synthesis inhibitor cycloheximide due to prevention of apoptosis? J Cereb Blood Flow Metab 11:S357

    Google Scholar 

  • Levi-Montalcini R, Caramia F, Angeletti PU (1969) Alterations in the fine structure of nucleoli in sympathetic neurons following NGF-antiserum treatment. Brain Res 12:54–73

    PubMed  Google Scholar 

  • Magnusson K, Wieloch TW (1989) Impairment of protein ubiquitination may cause delayed neuronal death. Neurosci Lett 96:264–270

    Article  PubMed  Google Scholar 

  • Martin DP, Schmidt RE, DiStefano PS, Lowry OH, Carter JG, Johnson EM Jr (1988) Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by nerve growth factor deprivation. J Cell Biol 106:829–844

    PubMed  Google Scholar 

  • Mattson MP, Murrain M, Guthrie PB, Kater SB (1989) Fibroblast growth factor and glutamate: Opposing roles in the generation and degeneration of hippocampal neuroarchitecture. J Neurosci 9:3728–3740

    PubMed  Google Scholar 

  • Mayer RJ, Arnold J, László L, Landon M, Lowe J (1991) Ubiquitin in health and disease. Biochem Biophys Acta 1089:141–157

    PubMed  Google Scholar 

  • McGee-Russell, Brown AW, Brierley JB (1970) A combined light and electron microscope study of early anoxic-ischemic cell change in rat brain. Brain Res 20:193–200

    Article  PubMed  Google Scholar 

  • Meldrum BS, Swan JH (1989) Competitive and non-competitive NMDA antagonists as cerebroprotective agents. In: Krieglstein J (ed) Pharmacology of cerebral ischemia 1988. CRC Press Inc Boca Raton 157–163

  • Monaghan DT, Bridges RJ, Cotman CW (1989) The excitatory amino acid receptors: Their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol 29:365–402

    Article  PubMed  Google Scholar 

  • Munekata K, Hossmann K-A, Xie Y, Seo K, Oschlies U (1987) Selective vulnerability of hippocampus: Ribosomal aggregation, protein synthesis and tissue pH. In: Raichle ME, Powers WJ (eds) Cerebrovascular disease. Raven Press, New York, pp. 107–117

    Google Scholar 

  • Nellgård B, Gustafson I, And Wieloch T (1991) Lack of protection by MK-801 (Dizoclipine maleate) on ischemic neuronal damage in the rat hippocampus following transient cerebral ischemia. Anesthesiology 75:279–287

    PubMed  Google Scholar 

  • Nellgård and Wieloch (1992) Postischemic blockade of AMPA but not NMDA receptors mitigates neuronal damage in the rat brain following transient cerebral ischemia. J Cereb Blood Flow Metabol (in press)

  • Onodera H, Sato G, Kogure K (1986) Lesions of the Schaffer collaterals prevent ischemic death of CA1 pyramidal cells. Neurosci Lett 68:169–174

    Article  PubMed  Google Scholar 

  • Parag HA, Raboy B, Kulka RG (1987) Effect of heat shock protein degradation in mammalian cells: involvement of the ubiquitin system. EMBO J 6:55–61

    PubMed  Google Scholar 

  • Paxinos G, Watson C (1982) The rat brain in stereotaxic coordinates. Sidney, Academic Press

    Google Scholar 

  • Peters A, Palay SL, Webster HF (1976) The fine structure of the nervous system: the neuron and supporting cells. WB Saunders Co, Philadelphia London Toronto

    Google Scholar 

  • Petito CK, Pulsinelli WA (1984A) Delayed neuronal recovery and neuronal death in rat hippocampus following severe cerebral ischemia: possible relationship to abnormalities in neuronal processes. J Cereb Blood Flow Metab 4:194–205

    PubMed  Google Scholar 

  • Petito CK, Pulsinelli WA (1984B) Sequential development of reversible and irreversible neuronal damage following cerebral ischemia. J Neuropathol Exp Neurol 43:141–153

    PubMed  Google Scholar 

  • Petito C, Feldmann E, Pulsinelli W, Plum F (1987) Delayed hippocampal damage in humans following cardiac arrest. Neurology 37:1282–1286

    Google Scholar 

  • Pratt RM, Greene RM (1976) Inhibition of palatal epithelial cell death by altered protein synthesis. Dev Biol 54:135–145

    Article  PubMed  Google Scholar 

  • Pulsinelli WA, Duffy TE (1983) Regional energy balance in rat brain after transient forebrain ischemia. J Neurochem 40:1500–1503

    PubMed  Google Scholar 

  • Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11:491–499

    Article  PubMed  Google Scholar 

  • Rechsteiner M (1987) Ubiquitin-mediated pathways for intracellular proteolysis. Ann Rev Cell Biol 3:1–30

    PubMed  Google Scholar 

  • Rothman SM (1984) Synaptic release of excitatory amino acid neurotransmitters mediates anoxic neuronal death. J Neurosci 4:1884–1891

    PubMed  Google Scholar 

  • Seubert P, Lee K, Lynch G (1989) Ischemia triggers NMDA receptor-linked cytoskeletal proteolysis in hippocampus. Brain Res 492:366–370

    PubMed  Google Scholar 

  • Sheardown MJ, Nielson EØ, Hansen AJ, Jacobsen P, Honoré T (1990) 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(F)-quinoxaline: a neuroprotectant for cerebral ischemia. Science 247:571–574

    PubMed  Google Scholar 

  • Shigeno T, Yamasaki Y, Kato G, Kusaka K, Mima T, Takakura K, Graham D, Furukawa S (1991) Reduction of delayed neuronal death by inhibition of protein synthesis. Neurosci Lett 120:117–119

    Article  Google Scholar 

  • Siesjö BK, Bengtsson F (1989) Calcium fluxes, calcium antagonists, and calcium related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J Cereb Blood Flow Metab 9:127–140

    PubMed  Google Scholar 

  • Siesjö BK (1985) Acid-base homeostasis in the brain: Physiology, chemistry, and neurochemical pathology. In: Kogure K, Hossmann K-A, Siesjö BK, Welsh FA (eds) Progress in Brain Research, Vol 63. Elsevier, Amsterdam, pp 121–154

    Google Scholar 

  • Siman R, Noszek CJ, Kegerise C (1989) Calpain I activation is specifically related to excitatory amino acid induction of hippocampal damage. J Neurosci 9:1579–1590

    PubMed  Google Scholar 

  • Smith M-L, Auer RN, Siesjö BK (1984A) The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia. Acta Neuropathol (Berl) 64:319–332

    Article  Google Scholar 

  • Smith M-L, Bendek G, Dahlgren N, Rosen I, Wieloch T, Siesjö BK (1984B) Models for studying long-term recovery following forebrain ischemia in the rat. A 2-vessel occlusion model. Acta Neurol Scand 69:385–401

    PubMed  Google Scholar 

  • Tatsuoka H (1986) Ultrastructural changes of afferent nerve terminals in the cat medial geniculate body after destruction of the inferior colliculus. J Submicro Cytol 18:35–46

    Google Scholar 

  • van Reempts J, Borgers M (1985) Ischemic brain injury and cell calcium: Morphologic and therapeutic aspects. Ann Emergency Med 14:736–742

    Google Scholar 

  • Westerberg E, Monaghan DT, Kalimo H, Cotman CW, Wieloch TW (1989) Dynamic changes of excitatory amino acid receptors in the rat hippocampus following transient cerebral ischemia. J Neurosci 9:798–805

    PubMed  Google Scholar 

  • Widmann R, Kuroiwa T, Bonnekoh P, Hossmann K-A (1991) [14C]Leucine incorporation into brain proteins in gerbils after transient ischemia: Relationship to selective vulnerability of hippocampus. J Neurochem 56:789–796

    PubMed  Google Scholar 

  • Wieloch T (1985) Neurochemical correlates to selective neuronal vulnerability. In: Kogure K, Hossmann K-A, Siesjö BK, Welsh FA (eds) Progress in Brain Research, Vol. 63. Elsevier, Amsterdam, pp 69–85

    Google Scholar 

  • Wieloch T, Lindvall O, Blomqvist P, Gage F (1985) Evidence for amelioration of ischemic neuronal damage in the hippocampal formation by lesions of the perforant path. Neurol Res 7:24–26

    PubMed  Google Scholar 

  • Wyllie AH, Kerr JFR, Currie AR (1980) Cell death: the significance of apoptosis. In: Bourne GH, Danielli JF, Jeon KW (eds) International Review of cytology, Vol 68, Academic Press pp 252–306

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deshpande, J., Bergstedt, K., Lindén, T. et al. Ultrastructural changes in the hippocampal CA1 region following transient cerebral ischemia: evidence against programmed cell death. Exp Brain Res 88, 91–105 (1992). https://doi.org/10.1007/BF02259131

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02259131

Key words

Navigation