Skip to main content
Log in

Antiparkinsonian dopamine agonists: a review of the pharmacokinetics and neuropharmacology in animals and humans

  • Review Article
  • Published:
Journal of Neural Transmission - Parkinson's Disease and Dementia Section

Summary

With the intention of compensating for the deficit of endogenous dopamine (DA) in the basal ganglia of Parkinsonian patients by substitution with agents which directly stimulate central DA receptors, synthetic DA agonists have been introduced almost 20 years ago for the symptomatic treatment of Parkinson's disease. The original expectation that DA agonists would be able to completely restore extrapyramidal motor function in Parkinsonian patients has turned out as too mechanistic and simplicative. However, undoubtedly DA agonists have improved therapeutic possibilities in Parkinson's disease. Thus, clinical evidence from controlled chronic studies in patients indicates that the therapeutic results following the early application of DA agonists in combination with L-DOPA on a long-term base are superior to the respective monotherapy. However, none of the DA agonists currently employed for antiparkinsonian treatment i.e. apomorphine and the ergoline derivatives bromocriptine, lisuride and pergolide, is optimal with respect to pharmacokinetic properties (poor oral bioavailability with considerable intra-and interindividual variation) or pharmacological profiles (low selectivity for DA receptors in case of the ergot agonists). The pathophysiology underlying Parkinson's disease which turned out more complex than initially expected might provide another explanation for the limited therapeutic potential of DA agonists. Therefore, apart from summarizing the pharmacokinetics, biotransformation, neuropharmacology and neurobiochemistry, of the DA agonists employed clinically, the present article also reviews physiological aspects of (a) central dopaminergic neurotransmission including the topographical distribution of DA receptor subtypes and their functional significance, (b) the intracellular signal processing in striatal output neurons and (c) the intraneuronal mechanisms which integrate the various neurotransmitter signals converging on the striatal output neuron to a demand-adjusted effector cell response via the cross-talk between the different second messenger systems. Based on these considerations, potential pharmacological approaches for the development of improved antiparkinsonian drugs are outlined. There is a therapeutic demand for more selective and better bioavailable DA agonists. In particular, selective D-1 receptor agonists are highly desirable to provide a more specific probe than SKF 38 393 for clarifying the current controversy on the disparate findings in nonprimate species and monkeys or Parkinsonian patients, respectively, regarding the functional significance of D-1 receptors for the antiparkinsonian action of DA agonists or L-DOPA. The therapeutic importance of D-2 receptor activation is generally accepted; whether DA agonists combining a balanced affinity to both D-1 and D-2 receptors within one molecule (to some extent a property of apomorphine) might be superior to subtype-specific DA agonists remains to be tested clinically. Beside selective DA agonists with markedly increased absolute oral bioavailability, the following alternative approaches for the symptomatic treatment of Parkinson's disease seem worth pursuing: (a) diminuition of excitatory amino acid (EAA)-mediated neurotransmission in the basal ganglia output nuclei, e.g. by EAA receptor antagonists, (b) pharmacological manipulation of the intracellular second messenger signals generated by DA, EAA's or acetylcholine in the striatal output neurons. Furthermore, preliminary experimental evidence indicates that, apart from symptomatic treatment, a preventive (neuroprotective) therapy of Parkinson's disease might be conceivable with EAA receptor antagonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aellig WH, Nüesch E (1977) Comparative pharmacokinetic investigations with tritiumlabeled ergot alkaloids after oral and intravenous administration in man. Int J Clin Pharmacol 15: 106–112

    Google Scholar 

  • Aghajanian GK, Bunney BS (1977) Pharmacological characterization of dopamine “autoreceptors” by microiontophoretic single-cell recording studies. Adv Biochem Psychopharmacol 16: 433–438

    PubMed  Google Scholar 

  • Altar CA, Marien MR (1987) Picomolar affinity of125J-SCH 23 982 for D1 receptors in brain demonstrated with digital substration autoradiography. J Neurosci 7: 213–222

    PubMed  Google Scholar 

  • Andén NE, Rubenson A, Fuxe K, Hökfelt T (1967) Evidence for dopamine receptor stimulation by apomorphine. J Pharm Pharmacol 19: 627–629

    PubMed  Google Scholar 

  • Andersen PH, Gingrich JA, Bates MD, Dearry A, Falardeau P, Senogles SE, Caron MG (1990) Dopamine receptor subtypes: beyond the D1/D2 classification. Trends Pharmacol Sci 11: 231–236

    Article  PubMed  Google Scholar 

  • Andersen PH, Nielsen EB (1986) The dopamine D1 receptor and behavioral aspects. In: Breese GR, Creese I (eds) Neurobiology of central D1 receptors. Plenum, New York London, pp 73–91

    Google Scholar 

  • Arnt J, Hyttel J (1986) Inhibition of SKF 38393- and pergolide-induced circling in rats with unilateral 6-OHDA lesion is correlated to dopamine D-1 and D-2 receptor affinities in vitro. J Neural Transm 67: 225–240

    Article  PubMed  Google Scholar 

  • Arnt J, Hyttel J, Perregaard J (1987) Dopamine, D-1 receptor agonists combined with the selective D-2 agonist quinpirole facilitate the expression of oral stereotyped behaviour in rats. Eur J Pharmacol 30: 137–145

    Article  Google Scholar 

  • Azuma H, Oshino N (1979) Stimulatory action of lisuride on dopamine-sensitive adenylate cyclase in the rat striatal homogenate. Jpn J Pharmacol 30: 629–639

    Google Scholar 

  • Azzaro AJ, Liccione J, Lucci J (1987) Opposing actions of D-1 and D-2 dopamine receptor-mediated alterations of adenosine-3′5′-cyclic monophosphate (cyclic AMP) formation during amphetamine-induced release of endogenous dopamine in vitro. Naunyn-Schmeidebergs Arch Pharmacol 336: 133–138

    Article  Google Scholar 

  • Barone P, Bankiewicz KS, Corsini GU, Kopin IJ, Chase TN (1987a) Dopaminergic mechanisms in hemiparkinsonian monkeys. Neurology 37: 1592–1595

    PubMed  Google Scholar 

  • Barone P, Tucci I, Parashos SA, Chase TN (1987b) D-1 dopamine receptor changes after striatal quinolinic acid lesion. Eur J Pharmacol 138: 141–145

    Article  PubMed  Google Scholar 

  • Beart PM, McDonald D, Cincotta M, de Vries DJ, Gundlach AL (1986) Selectivity o some ergot derivatives for 5-HT1 and 5-HT2 receptors of rat cerebral cortex. Gen Pharmacol 17: 57–62

    PubMed  Google Scholar 

  • Beninger RJ, Cheng M, Hahn BL, Hoffman DC, Mazurski EJ, Morency MA, Ramm P, Stewart RJ (1987) Effects of extinction, pimozide, SCH 23 390, and metoclopramide on food-rewarded operant responding of rats. Psychopharmacology 92: 343–349

    Google Scholar 

  • Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. J Neurol Sci 20: 415–455

    Article  PubMed  Google Scholar 

  • Bertorello AM, Hopfield JF, Aperia A, Greengard P (1990) Inhibition by dopamine of (Na++K+) ATPase activity in neostriatal, neurons through D1 and D2 dopamine receptor synergism. Nature 347 386–388

    Article  PubMed  Google Scholar 

  • Bianchi G, Landi M, Garattini S (1986) Disposition of apomorphine in rat brain areas: relationship to stereotypy. Eur J Pharmacol 131: 229–236

    Article  PubMed  Google Scholar 

  • Boissier JR, Euvrad C, Oberlander C, Laurent J, Dumont C, Labrie F (1983) Comparative study of central dopaminergic properties of RU 29717 (N-propyl-9-oxaergoline) and pergolide. Eur J Pharmacol 87: 183–189

    Article  PubMed  Google Scholar 

  • Borison HL, Wang SC (1953) Physiology and pharmacology of vomiting. Pharmacol Rev 5: 193–230

    PubMed  Google Scholar 

  • Braun A, Fabbrini G, Mouradian MM, Serrati C, Barone P, Chase TN (1987) Selective D-1 dopamine receptor agonist treatment of Parkinson's disease. J Neural Transm 68: 41–50

    Article  PubMed  Google Scholar 

  • Bräutigam M, Kittner B, Laschinski G (1985) Effects of apomorphine enantiomers and of lisuride on 3,4-dihydroxyphenylalanine production in striatal synaptosomes. Mol Pharmacol 28: 515–520

    PubMed  Google Scholar 

  • Breese GR, Criswell HE, McQuade RD, Iorio LC, Mueller RA (1990) Pharmacological evaluation of SCH-12679: evidence for an in vivo antagonism of D1-dopamine receptors. J Pharmacol Exp Ther 252: 558–567

    PubMed  Google Scholar 

  • Burns RS, Chieuh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of parkinsonism: selective destruction of dopaminergic, neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci USA 80: 4546–4550

    PubMed  Google Scholar 

  • Calne DB, Teychenne PF, Leigh PN, Bamji AN, Greenacre JK (1974) Treatment of parkinsonism with bromocriphine. Lancet ii: 1355–1356

    Article  Google Scholar 

  • Campbell A, Kula NS, Jeppsson B, Baldessarini RJ (1980) Oral bioavailability of apomorphine in the rat with portocaval venous anastomosis. Eur J Pharmacol 67: 139–142

    Article  PubMed  Google Scholar 

  • Camps M, Kelly PH, Palacios JM (1990) Autoradiographic localization of dopamine D1 and D2 receptors in the brain of several mammalian species. J Neural Transm [Gen Sect] 80: 105–127

    Article  Google Scholar 

  • Carlsson M, Carlsson A (1989) The NMDA antagonist MK-801 causes marked locomotor stimulation in monoamine-depleted mice. J Neural Transm 75: 221–226

    Article  PubMed  Google Scholar 

  • Cavero I, Lefevre-Borg F, Lhoste F, Sabatier C, Richer C, Guidicelli JF (1984) Pharmacological hemodynamic and autononic nervous system mechanisms responsible for the blood pressure and heart rate lowering effects of pergolide in rats. J Pharmacol Exp Ther 228: 779–791

    PubMed  Google Scholar 

  • Chipkin RE (1988) Effects of D1 and D2 antagonists on basal and apomorphine decreased body temperature in mice and rats. Pharmacol Biochem Behav 30: 683–686

    Article  PubMed  Google Scholar 

  • Chugh A, Gupta YK, Bhandari P, Seth SD (1988) Characterization of dopamine receptor subtypes in chemoreceptor trigger zone involved in emesis in dogs. Asia Pac J Pharmacol 3: 135–139

    Google Scholar 

  • Closse A, Frick W, Dravid A, Bolliger G, Hauser D, Sauter A, Tobler HJ (1984) Classification of drugs according to receptor binding profiles. Naunyn-Schmiedebergs Arch Pharmacol 327: 95–101

    Article  PubMed  Google Scholar 

  • Closse A, Frick W, Markstein R, Maurer R, Nordmann R (1985) [3H] 205–501, a non-catechol dopaminergic agonist, labels selectively and with high affinity dopamine D2 receptors. J Neural Transm 62: 231–248

    Article  PubMed  Google Scholar 

  • Cocchi D, Ingrassia S, Rusconi L, Villa I, Müller EE (1987) Absence of D-1 dopamine receptors that stimulate prolactin release in the rat pituitary. Eur J Pharmacol 142: 425–429

    Article  PubMed  Google Scholar 

  • Consolo S, Ladinsky H, Pugnetti P, Fusi R, Crunelli V (1981) Increase in rat striatal acetylcholine content by bromocriptine: Evidence for an indirect dopaminergic action. Life Sci 29: 457–465

    Article  PubMed  Google Scholar 

  • Corrodi H, Fuxe K, Hökfelt T, Lidbrink P, Ungerstedt U (1973) Effect of ergot drugs on central catecholamine neurons: evidence for a stimulation of central dopamine neurons. J Pharm Pharmacol 25: 409–412

    PubMed  Google Scholar 

  • Cotzias GC, Papavasiliou PS, Fehling C, Kaufman B, Mena I (1970) Similarities between neurologic effects of L-DOPA and of apomorphine. N. Engl J Med 282: 31–33

    PubMed  Google Scholar 

  • Cox B (1979) Dopamine. In: Lomax P, Schönbaum E (eds) Body temperature regulation, drug effects and therapeutic implications. Marcel Dekker, New York, pp 231–255

    Google Scholar 

  • Cross AJ, Owen F (1980) Characteristics of3H-cis-flupenthixol binding to calf brain membranes. Eur J Pharmacol 65: 341–347

    Article  PubMed  Google Scholar 

  • Da Prada M, Bonetti EP, Keller HH (1977) Induction of mounting behaviour in female and male rats by lisuride. Neurosci Lett 6: 349–353

    Article  Google Scholar 

  • Drewe J, Mazer N, Abisch E, Krummen K, Keck M (1988) Differential effect of food on kinetics of bromocriptine in a modified release capsule and a conventional formulation. Eur J Clin Pharmacol 35: 535–541

    Article  PubMed  Google Scholar 

  • Faunt JE, Crocker AD (1987) The effects of selective dopamine receptor agonists and antagonists on body temperature in rats. Eur J Pharmacol 133: 243–247

    Article  PubMed  Google Scholar 

  • Flückiger E, Briner U, Bürki HR, Marbach P, Wagner HR, Döpfner W (1979) Two novel problactin release-inhibiting 8α-amino-ergolines. Experientia 35: 1677–1678

    Article  PubMed  Google Scholar 

  • Flückiger E, Briner U, Clark B, Closse A, Enz A, Gull P, Hofmann A, Markstein R, Tolesvai L, Wagner HR (1988) Pharmacodynamic profile of CQP 201-403, a novel 8α-amino-ergoline. Experientia 44: 431–436

    Article  PubMed  Google Scholar 

  • Flückiger E, Briner U, Enz A, Markstein R, Vigouret JM (1983) Dopaminergic ergot compounds: an overview. In: Calne DB, Horowski R, McDonald RJ, Wuttke W (eds) Lisuride and other dopamine agonists. Raven, New York, pp 1–9

    Google Scholar 

  • Forno LS, DeLanney LE, Irwin I, Langston JW (1986) Neuropathology of MPTP-treated monkeys: comparison with the neuropathology of human idiopathic Parkinson's disease. In: Markey SP, Castagnoli N Jr, Trevor AJ, Kopin IJ (eds) MPTP: a neurotoxin producing a parkinsonian syndrome. Academic, New York, pp 119–140

    Google Scholar 

  • Freedman JE, Weight FF (1988) Single K+ channels activated by D2 dopamine receptors in acutely dissociated neurons from rat corpus striatum. Proc Natl Acad Sci USA 85: 3618–3622

    PubMed  Google Scholar 

  • Freund TF, Pawell JF, Smith AD (1984) Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines. Neuroscience 13: 1189–1215

    Article  PubMed  Google Scholar 

  • Fuller RW, Clemens JA, Kornfeld EC, Snoddy HD, Smalstieg EB, Bach NJ (1979) Effects of (8β)-8-[(methylthio)methyl]-6-propyl ergoline on dopaminergic function and brain dopamine turnover in rats. Life Sci 24: 375–382

    Article  PubMed  Google Scholar 

  • Fuller RW, Hemrick-Luecke SK, Perry KW, Toomy RE (1985) Pergolide elevation of MHPG sulphate concentration in rat hypothalamus blocked by spiperone and mimicked by other dopamine agonists. J Pharm Pharmacol 37: 268–270

    PubMed  Google Scholar 

  • Fuller RW, Perry KW (1983) Effect of pergolide on MOPEG sulphate levels in rat brain regions. J Pharm Pharmacol 35: 57–58

    PubMed  Google Scholar 

  • Fuster JM (1989) The prefrontal cortex. Raven Press, New York

    Google Scholar 

  • Gagnon C, Bédard PJ, di Paolo T (1990) Effect of chronic treatment of MPTP monkeys with dopamine D-1 and/or D-2 receptor agonists. Eur J Pharmacol 178: 115–120

    Article  PubMed  Google Scholar 

  • Gancher ST, Woodward WR, Boucher B, Nutt JG (1989) Peripheral pharmacokinetics of apomorphine in humans. Ann Neurol 26: 232–238

    Article  PubMed  Google Scholar 

  • Geffen LB, Jessell TM, Cuello AC, Iversen LL (1976) Release of dopamine from dendrites in rat substantia nigra. Nature 260: 258–260

    Article  PubMed  Google Scholar 

  • Gessa GL, Tagliamonte A, Tagliamonte P (1971) Aphrodisiac effect of p-chlorphenylalanine. Science, 171: 706–707

    Google Scholar 

  • Girault JA, Raisman-Vozari R, Agid Y, Greengard P (1989) Striatal phosphoproteins in Parkinson disease and progressive supranuclear palsy. Proc Natl Acad Sci 86: 2493–2497

    PubMed  Google Scholar 

  • Grabowska-Andén M, Andén NE (1987) Inhibitory role of D-1 dopamine receptors for the jerks induced by B-HT 920 in rats. J Pharm Pharmacol 39: 660–661

    PubMed  Google Scholar 

  • Hall MD, Jenner P, Kelly, E, Marsden CD (1983) Differential anatomical location of [3H]-N-n-propylnorapomorphine and [3H]-spiperone binding sites in the striatum and substantia nigra of the rat. Br J Pharmacol 79: 599–610

    PubMed  Google Scholar 

  • Halpain S, Girault JA, Greengard P (1990) Activation of NMDA receptors induces dephosphorylation of DARPP-32 in rat striatal slices. Nature 343: 369–372

    Article  PubMed  Google Scholar 

  • Haubrich DR, Pflueger AB (1982) The autoreceptor control of dopamine synthesis. An in vitro and in vivo comparison of dopamine agonists. Mol Pharmacol 21: 114–120

    PubMed  Google Scholar 

  • Hemmings HC, Walaas, SI, Quimet CC, Greengard P (1987) Dopamine regulation of protein phosphorylation in the striatum: DARPP-32. Trends Neurosci 10: 377–383

    Article  Google Scholar 

  • Horowski R (1989) Lisuride and related 8-α-amino-ergolines as a new class of CNS-active drugs: from “dirty drugs” to “intelligent molecules”? Funct Neurol 4 [Suppl]: 3–37

    Google Scholar 

  • Horowski R, Wachtel H (1976) Direct dopaminergic action of lisuride hydrogen maleate, an ergot derivative, in mice. Eur J Pharmacol 36: 373–383

    Article  PubMed  Google Scholar 

  • Horowski R, Wendt H, Gräf KJ (1978) Prolactin-lowering effect of low doses of lisuride in man. Acta Endocrinol 87: 234–240

    PubMed  Google Scholar 

  • Hümpel M, Krause W, Hoyer GA, Wendt H, Pommerenke G (1984) The pharmacokinetics and biotransformation of14C-lisuride hydrogen maleate in rhesus monkeys and man. Eur J Drug Metab Pharmacokinet 4: 347–357

    Google Scholar 

  • Hümpel M, Nieuweboer B, Hasan SH, Wendt H (1981a) Radioimmunoassay of plasma lisuride in man following intravenous and oral administration of lisuride hydrogen maleate; effect on plasma prolactin level. Eur J Clin Pharmacol 20: 47–51

    PubMed  Google Scholar 

  • Hümpel M, Toda T, Oshino N, Pommerenke G (1981b) The pharmacokinetics of lisuride hydrogen maleate in rat, rabbit and rhesus monkey. Eur J Drug Metab Pharmacokinet 6: 207–219

    PubMed  Google Scholar 

  • Hyttel J, Arnt J (1986) Characterization of dopamine D-1 and D-2 receptors. In: Breese GR, Creese I (eds) Neurobiology of central D1-receptors. Plenum New York London pp 15–28

    Google Scholar 

  • Isaacs B, MacArthur JG (1954) Influence of chlorpromazine and promethazine on vomiting induced with apomorphine in man. Lancet ii: 570–572

    Article  Google Scholar 

  • Izzo PN, Bolam JP (1988) Cholinergic synaptic input to different parts of spiny striatonigral neurons in the rat. J Comp Neurol 269: 219–234

    Article  PubMed  Google Scholar 

  • Jackson DM, Hashizume M (1987) Bromocriptine-induced locomotor stimulation in mice is modulated by dopamine D-1 receptors. J Neural Transm 69: 131–145

    Article  PubMed  Google Scholar 

  • Jiang DH, Reches A, Wagner HR, Fahn S (1984) Biochemical and behavioral evaluation of pergolide as a dopamine agonist in the rat brain. Neuropharmacology 23: 295–301

    Article  PubMed  Google Scholar 

  • Johns DW, Ayers, CR, Carey RM (1984) The dopamine agonist bromocriptine induces hypotension by venous and arteriolar dilation. J Cardiovasc Pharmacol 6: 582–587

    PubMed  Google Scholar 

  • Johnson AM, Loew DM, Vigouret JM (1976) Stimulant properties of bromocriptine on central dopamine receptors in comparison to apomorphine, (+)-amphetamine and L-DOPA. Br J Pharmacol 56: 59–68

    PubMed  Google Scholar 

  • Joyce JN, Marshall JF (1987) Quantitative autoradiography of dopamine D2 sites in rat caudate-putamen: localization to intrinsic neurons and not to neocortical afferents. Neuroscience 20: 773–795

    Article  PubMed  Google Scholar 

  • Karobath M (1986) Dopamine agonists: new vistas. In: Fahn S, Marsden CD, Jenner P, Teychenne P (eds) Recent developments in Parkinson's disease. Raven, New York, pp 175–182

    Google Scholar 

  • Kaul PN, Brochmann-Hanssen E, Way EL (1961) Biological disposition of apomorphine IV: isolation and characterisation of “bound” apomorphine. J Pharm Sci 50: 840–842

    PubMed  Google Scholar 

  • Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277: 93–96

    Article  PubMed  Google Scholar 

  • Kebabian JW, Petzold GL, Greengard P (1972) Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain and its similarity to the “dopamine receptor”. Proc Natl Acad Sci USA 69: 2145–2149

    PubMed  Google Scholar 

  • Kehr W (1977) Effect of lisuride and other ergot derivatives on monoaminergic mechanisms in rat brain. Eur J Pharmacol 41: 261–273

    Article  PubMed  Google Scholar 

  • Kehr W, Carlsson A, Lindquist M (1975) Biochemical aspects of dopamine agonists. Adv Neurol 9: 185–195

    PubMed  Google Scholar 

  • Kehr W, Carlsson A, Magnusson T, Atack C (1972) Evidence for a receptor mediated feedback control of striatal tyrosine hydroxylase activity. J Pharm Pharmacol 24: 744–747

    PubMed  Google Scholar 

  • Kelly E, Nahorski SR (1986) Specific inhibition of dopamine D-1 mediated cyclic AMP formation by dopamine D-2, muscarinic cholinergic, and opiate receptor stimulation in rat striatal slices. J Neurochem, 47: 1512–1516

    PubMed  Google Scholar 

  • Kelly E, Nahorski SR (1987) Dopamine D-2 receptors inhibit D-1 stimulated cyclic AMP accumulation in striatum but not limbic forebrain. Naunyn-Schmiedebergs Arch Pharmacol 335: 508–512

    PubMed  Google Scholar 

  • Klockgether T, Turski L, Löschmann PA, Wachtel H (1990) N-Methyl-D-aspartate antagonists stimulate locomotor activity in monoamine depleted rats: implications for the therapy of Parkinson's disease. In: Lubec G, Rosenthal GA (eds) Amino acids: chemistry, biology and medicine. Escom, Leiden, pp 269–275

    Google Scholar 

  • Konzett H, Strieder N (1969) Über die Wirkung von Apomorphin auf die Haut- und Muskeldurchblutung des Menschen. Z Kreislaufforsch 58: 210–214

    PubMed  Google Scholar 

  • Korf J, Zieleman M, Westerink BHC (1976) Dopamine release in substantia nigra? Nature 260: 257–258

    Google Scholar 

  • Koshikawa N, Tomiyama K, Omiya K, Kikuchi de Beltran K Kobayashi M (1990) Dopamine D-1 but not D-2 receptor stimulation of the dorsal striatum potentiates apomorphine-induced jaw movements in rats. Eur J Pharmacol 178: 189–194

    Article  PubMed  Google Scholar 

  • Kubota Y, Inagaki S, Shimeda S, Kito S, Wu JY (1987) Glutamate decarboxylase-like immunoreactive neurons in the rat caudate putamen. Brain Res Bull 18: 687–697

    Article  PubMed  Google Scholar 

  • Ladinsky H, Consolo S, Bianchi S Samanin R Ghezzi D (1975) Cholinergic-dopaminergic interaction in the striatum: the effect of 6-hydroxydopamine or pimozide treatment on the increased striatal acetylcholine levels induced by apomorphine, piribedil and D-amphetamine. Brain Res 84: 221–226

    Article  PubMed  Google Scholar 

  • Langston JW, Ballard PA (1983) Parkinson's disease in a chemist working with 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP). N Engl J Med 309: 310

    Google Scholar 

  • Lehmann J, Langer SZ (1983) The striatal cholinergic interneuron: synaptic target of dopaminergic terminals? Neuroscience 10: 1105–1120

    Article  PubMed  Google Scholar 

  • Lemberger L, Crabtree RE (1979) Pharmacological effects in man of a potent, long-acting dopamine receptor agonist. Science 205: 1151–1153

    PubMed  Google Scholar 

  • Longoni P, Spina L, di Chiara G (1987) Permissive role of D-1 receptor stimulation by endogenous dopamine for the expression of postsynaptic D-2 mediated behavioural responses. Yawning in rats. Eur J Pharmacol 134: 163–167

    Article  PubMed  Google Scholar 

  • MacLeod RM (1977) Influence of dopamine, serotonin and their antagonists on prolactin secretion. Progr Reprod Biol 2: 54–68

    Google Scholar 

  • Mahan LC, Burch RM, Monsma FJ Jr, Sibley R (1990), Expression of striatal D1 dopamine receptors coupled to inositol phosphate production and Ca2+ mobilization in Xenopus occytes. Proc Natl Acad Sci USA 87: 2196–2200

    PubMed  Google Scholar 

  • Mannelli M, Delitala G, de Feo LM, Maggi M, Cuomo S, Piazzini M, Guazelli R, Serio M (1984) Effects of different dopaminergic antagonists on bromocriptine-induced inhibition of norepinephrine release. J Clin Endocrinol Metab 59: 74–78

    PubMed  Google Scholar 

  • Mannesmann G, Haberey M, Müller B, Goedecke H (1979) Pharmacological characterization of the cardiovascular activity of lisuridehydrogenmaleate. Naunyn Schmiedebergs Arch Pharmacol [Suppl] 308: R18

    Google Scholar 

  • Marchetti C, Carbone E, Lux HD (1986) Effects of dopamine and noradrenaline on Ca channels of cultured sensory and sympathetic neurons of chick. Pfluegers Arch 406: 104–111

    Article  Google Scholar 

  • Markey SP, Colburn RW, Kopin IJ, Aamodt RL (1979) Distribution and excretion in the rat and monkey of [82Br] bromocriptine. J Pharmacol Exp Ther 211: 31–35

    PubMed  Google Scholar 

  • Markstein R (1986) Pharmacological characterisation of central dopamine receptors using functional criteria. In: Winlow W, Markstein R (eds) The neurobiology of dopamine systems. Manchester University Press, Manchester, pp 40–52

    Google Scholar 

  • Markstein R, Herrling PL, Bürki HR, Asper H, Ruch W (1978) The effect of bromocriptine on rat striatal adenylate cyclase and rat brain monoamine metabolism. J Neurochem 31: 1163–1172

    PubMed  Google Scholar 

  • Maurer G, Schreier E, Delaborde S, Loosi HR, Nufer R, Shukla AP (1982) Fate and disposition of bromocriptine in animals and man. I. Structure elucidation of the metabolites. Eur J Drug Metab Pharmacokinet 7: 281–292

    PubMed  Google Scholar 

  • Maurer G, Schreier E, Delaborde S, Nufer R, Shukla AP (1983) Fate and disposition of bromocriptine in the rat. Biopharm Drug Dispos 6: 301–311

    Google Scholar 

  • Maurer G, Schreier E, Delaborde S, Nufer R, Shukla AP (1983) Fate and disposition o bromocriptine in animals and man. II. Absorption, elimination and metabolism. Eur J Drug Metab Pharmacokinet 8: 51–62

    PubMed  Google Scholar 

  • McPherson GA, Beart PM (1983) The selectivity of some ergot derivatives for α1 and α2-adrenoceptors of rat cerebral cortex. Eur J Pharmacol 91: 363–369

    Article  PubMed  Google Scholar 

  • Missala K, Lal S, Sourkes TL (1973) O-Methylation of apomorphine and the metabolic prolongation of apomorphine-induced stereotyped behaviour. Eur J Pharmacol 22: 54–58

    Article  PubMed  Google Scholar 

  • Molloy AG, Waddington JL (1987) Pharmacological characterisation of grooming and other behavioural responses to the D-1 dopamine receptor agonist R-SKF 38393. J Psychopharmacol 1: 177–183

    Google Scholar 

  • Moore NA, Axton MS (1988) Production of climbing behaviour in mice requires both D-1 and D-2 receptor activation. Psychopharmacology 94: 263–266

    Google Scholar 

  • Morgenroth VH, Hegstrand LR, Roth RH, Greengard P (1975) Evidence for involvement of proteinkinase in the activation by adenosine 3′,5′-monophosphate of brain tyrosine 3-monooxygenase. J Biol Chem 250: 1946–1948

    PubMed  Google Scholar 

  • Munkvad I, Pakkenberg H, Randrup A (1968) Aminergic systems in basal ganglia associated with stereotyped hyperactive behaviour and catalepsy. Brain Behav Evol, 1: 89–100

    Google Scholar 

  • Murrin LC, Gale K, Kuhar MJ (1979) Autoradiographic localization of neuroleptic and dopamine receptors in the caudate putamen and substantia nigra: effects of lesions. Eur J Pharmacol 60: 229–235

    Article  PubMed  Google Scholar 

  • Nagy JI, Vincent SR, Lehmann J, Fibiger HC, McGeer EG (1978) The use of kainic acid in the localization of enzymes in the substantia nigra. Brain Res 149: 431–441

    Article  PubMed  Google Scholar 

  • Nakajima S, McKenzie GM (1986) Reduction of the rewarding of brain stimulation by a blockade of dopamine D1 receptor with SCH 23390. Pharmacol Biochem Behav 24: 919–923

    Article  PubMed  Google Scholar 

  • Niemegeers CJE (1971) The apomorphine antagonism test in dogs. Pharmacology 6: 353–364

    PubMed  Google Scholar 

  • Nisoli E, Grilli M, Memo M, Missale C, Spano PF (1988) Pharmacological characterization of D1 and D2 receptors in rat limbocortical areas. I. Frontal cortex. Neurosci Lett 87: 247–252

    Article  PubMed  Google Scholar 

  • Nomoto M, Jenner P, Marsden CD (1985) The dopamine D-2 agonist LY 141865, but not the D1 agonist SKF 38393, reverses parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the common marmoset. Neurosci Lett 57: 37–41

    Article  PubMed  Google Scholar 

  • Obeso JA, Luquin MR, Martinez-Lage JM (1986) Lisuride infusion pump: a device for the treatment of motor fluctuations in Parkinson's disease. Lancet i: 467–470

    Article  Google Scholar 

  • Onali P, Olianas MC, Gessa GL (1985) Characterization of dopamine receptors mediating inhibition of adenylate cyclase activity in rat striatum. Mol Pharmacol 28: 138–145

    PubMed  Google Scholar 

  • Paalzow LK, Paalzow GHM (1986) Concentration-response relations for apomorphine effects on heart rate in conscious rats. J Pharm Pharmacol 38: 28–34

    PubMed  Google Scholar 

  • Parisi JE, Burns RS (1986) The neuropathology of MPTP-induced parkinsonism in man and experimental animals. In: Markey SP, Castagnoli N Jr, Trevor AJ, Kopin IJ (eds) MPTP: a neurotoxin producing a parkinsonian syndrome. Academic, New York, pp 141–148

    Google Scholar 

  • Pijnenburg AJJ, van Rossum JM (1973) Stimulation of locomotor activity following injection of dopamine into the nucleus accumbens. J Pharm Pharmacol 25: 1003–1005

    PubMed  Google Scholar 

  • Pizzi M, D'Agostini F, Da Prada M, Spano PF, Haefely WE (1987) Dopamine D2 receptor stimulation decreases the inositol triphosphate level of rat striatal slices. Eur J Pharmacol 136: 263–264

    Article  PubMed  Google Scholar 

  • Rabey JM, Passeltiner P, Markey K, Asano T, Goldstein M (1981) Stimulation of pre- and postsynaptic dopamine receptors by an ergoline and by a partial ergoline. Brain Res 225: 347–356

    Article  PubMed  Google Scholar 

  • Rinne UK (1986) The importance of an early combination of a dopamine agonist and levodopa in the treatment of Parkinson's disease. In: van Maanen J, Rinne UK (eds) Lisuride: a new dopamine agonist and Parkinson's disease. Excerpta Medica, Amsterdam, pp 64–71

    Google Scholar 

  • Rogawski MA (1987) New directions in neurotransmitter action: dopamine provides some important clues. Trends Neurosci 10: 200–205

    Article  Google Scholar 

  • Rogawski MA, Aghajanian GK (1979) Response of central monoaminergic neurons to lisuride: comparison with LSD. Life Sci 24: 1289–1298

    Article  PubMed  Google Scholar 

  • Rosengarten H, Schweitzer JW, Friedhoff AJ (1986) Selective dopamine D-2 receptor reduction enhances a D-1 mediated oral dyskinesia in rats. Life Sci 39: 29–35

    Article  PubMed  Google Scholar 

  • Rotrosen J, Angrist B, Clark C, Gershon S, Halpern FS, Sachar EJ (1978) Suppression of prolactin by dopamine agonists in schizophrenics and controls. Am J Psychiatry 135: 949–951

    PubMed  Google Scholar 

  • Routenberg A, Sloane M (1971) Self-stimulation in the frontal cortex of Rattus norvegicus. J Comp Physiol Psychol 75: 269–276

    PubMed  Google Scholar 

  • Rubin A, Lemberger L, Dhahir P (1981) Phsyiologic disposition of pergolide. Clin Pharmacol Ther 30: 258–265

    PubMed  Google Scholar 

  • Saiani L, Trabucchi M, Tonon GC, Spano PF (1979) Bromocriptine and lisuride stimulate the accumulation of cyclic AMP in intact slices but not in homogenates of rat neostriatum. Neurosci Lett 14: 31–36

    Article  PubMed  Google Scholar 

  • Savasta M, Dubois A, Benavides J, Scatton B (1986) Different neuronal location of [3H] SCH 23 390 binding sites in pars reticulata and pars compacta of the substantia nigra in the rat. Neurosci Lett 72: 265–271

    Article  PubMed  Google Scholar 

  • Schmidt JW, Bubser M (1989) Anticataleptic effect of the N-methyl-D-aspartate antagonist MK-801 in rats. Pharmacol Biochem Behav 32: 621–623

    Article  PubMed  Google Scholar 

  • Schran HF, Bhuta SI, Schwarz HJ, Thorner MO (1980) The pharmacokinetics of bromocriptine in man. Adv Biochem Psychopharmacol 23: 125–139

    PubMed  Google Scholar 

  • Schran HF, Tse FLS, Bhouta SI (1985) Pharmacokinetics and pharmacodynamics of bromocriptine in the rat. Biopharm Drug Dispos 6: 301–311

    PubMed  Google Scholar 

  • Schwab RS, Amador LV, Lettvin JY (1951) Apomorphine in Parkinson's disease. Trans Am Neural Assoc 76: 251–253

    Google Scholar 

  • Schwartz JC, Agid Y, Buthenet ML, Javoy-Agid F, Llorens-Cortes C, Martres MP, Pollard H, Sales N, Taquet H (1986) Neurochemical investigations in the human area postrema. In: Davis JC, Lake-Bakaar GV, Grahame-Smith DG (eds) Nausea and vomiting: mechanisms and treatments. Springer, Berlin Heidelberg New York, pp 18–30

    Google Scholar 

  • Seeman P (1980) Brain dopamine receptors. Pharmacol Rev 32: 229–313

    PubMed  Google Scholar 

  • Sesack SR, Bunney BS (1989) Pharmacological characterization of the receptors mediating eletrophysiological responses to dopamine in the rat medial prefrontal cortex: a microiontophoretic study. J Pharmacol Exp Ther 248: 1323–1333

    PubMed  Google Scholar 

  • Setler PE, Sarau HM, Zirkle CL, Saunders HL (1978) The central effects of a novel dopamine agonist. Eur J Pharmacol 50: 419–430

    Article  PubMed  Google Scholar 

  • Smith RV, Cook MR (1974) Conversion of apocodeine to apomorphine and norapomorphine in rats. J Pharm Sci 63: 161–162

    PubMed  Google Scholar 

  • Smith RV, Klein AE, Wilcox RE, Riffee WH (1981) Apomorphine: bioavailability and effect on stereotyped cage climbing in mice. J Pharm Sci 70: 1144–1147

    PubMed  Google Scholar 

  • Smith RV, Velagapudi RB, McLean AM, Vilcox RE (1985) Interactions of apomorphine with serum and tissue proteins. J Med Chem 28: 613–620

    Article  PubMed  Google Scholar 

  • Snider SR, Hutt C, Stein B, Fahn S (1975) Increase in brain serotonin produced by bromocriptine. Neurosci Lett 1: 237–241

    Article  Google Scholar 

  • Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC (1990) Molecular cloning and characterization of a novel dopamine (D3) receptor as a target for neuroleptics. Nature 347: 146–151

    Article  PubMed  Google Scholar 

  • Stahle L, Ungerstedt U (1986) Effects of neuroleptic drugs on the inhibition of exploratory behaviour induced by a low dose of apomorphine: implications for the identity of dopamine receptors. Pharmacol Biochem Behav 25: 473–480

    Article  PubMed  Google Scholar 

  • Starr M (1987) Opposing roles of dopamine D1 and D2 receptors in nigral gamma-[3H]aminobutyric acid release? J Neurochem 49: 1042–1049

    PubMed  Google Scholar 

  • Stefanini E, Clement-Cormier Y (1981) Detection of dopamine receptors in the area postrema. Eur J Pharmacol 74: 257–260

    Article  PubMed  Google Scholar 

  • Stoof JC, DeBoer TH, Sminia P, Mulder AH (1982) Stimulation of D2-dopamine receptor in rat neostriatum inhibits the release of acetylcholine and dopamine but does not affect the release of gamma-aminobutyric acid, glutamate or serotonin. Eur J Pharmacol 84: 211–214

    Article  PubMed  Google Scholar 

  • Stoof JC, Kebabian JW (1981) Opposing roles for D-1 and D-2 dopamine receptors in efflux of cyclic AMP from rat striatum. Nature 294: 366–368

    Article  PubMed  Google Scholar 

  • Tadepalli AS, Nowak PJ (1983) Cardiovascular effects of bromocriptine and lergotrile in renal and spontaneously hypertensive rats. Arch Int Pharmacodyn 266: 93–105

    PubMed  Google Scholar 

  • Thorner MB, Flückiger E, Calne DB (1980) Bromocriptine. A clinical and pharmacological review. Raven, New York

    Google Scholar 

  • Tissari AH, Rossetti ZL, Meloni M, Frau JI, Gessa GL (1983) Autoreceptors mediate the inhibition of dopamine synthesis by bromocriptine and lisuride in rats. Eur J Pharmacol 91: 463–468

    Article  PubMed  Google Scholar 

  • Toda T, Oshino N (1981) Biotransformation of lisuride in the haemoglobin-free perfused rat liver and in the whole animal. Drug Metab Dispos 9: 108–113

    PubMed  Google Scholar 

  • Trugman JM, Geary WA, Wooten GF (1986) Localization of D2 dopamine receptors to intrinsic striatal neurons by quantitative autoradiography. Nature 323: 267–269

    Article  PubMed  Google Scholar 

  • Turski L, Bressler K, Rettig KJ, Löschmann PA, Wachtel H (1991) Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists. Nature 349: 414–418

    Article  PubMed  Google Scholar 

  • Turski WA, Cavalheiro EA, Ikonomidou C, Bortolotto ZA, Klockgether T, Turski L (1990) Dopamine control of seizure propagation: intranigral dopamine D1 agonist SKF-38393 enhances susceptibility to seizures. Synapse 5: 113–119

    Article  PubMed  Google Scholar 

  • Ungerstedt U, Arbuthnott GW (1970) Quantitative recording of rotational behavior in rats after 6-hydroxydopamine lesions of the nigro-striatal dopamine system. Brain Res 24: 485–493

    Article  PubMed  Google Scholar 

  • Vigouret JM, Bürki HR, Jaton AL, Züger PE, Loew DM (1978) Neurochemical and neuropharmacological investigations with four ergot derivatives: bromocriptine, dihydroergotoxin, CF 25-397 and CM 29-712. Pharmacology [Suppl] 16: 156–173

    PubMed  Google Scholar 

  • von Euler G, von Euler A (1991) Dopamine D2 receptors attenuate phosphotidylinositol-4,5-biphosphate in synaptosomal membranes of rat neostriatum. J Neurochem 56: 136–140

    PubMed  Google Scholar 

  • Wachtel H, Kehr W, Schlangen M (1986) Involvement of dopamine auto- and postsynaptic receptors in locomotor effects of lisuride after systemic or intracerebral administration. In: van Maanen J, Rinne UK (eds) Lisuride: a new dopamine agonist and Parkinson's disease. Excerpta Medica, Amsterdam, pp 11–23

    Google Scholar 

  • Wachtel RS, Hu XT, Galloway MP, White FJ (1989) D1 dopamine receptor stimulation enables the postsynaptic, but not autoreceptor, effects of D2 dopamine agonists in nigrostriatal and mesoaccumbens dopamine systems. Synapse 4: 327–346

    Article  PubMed  Google Scholar 

  • Waddington JL, O'Boyle KM (1989) Drugs acting on brain dopamine receptors: a conceptual re-evaluation five years after the first selective D-1 antagonist. Pharmacol Ther 43: 1–52

    Article  PubMed  Google Scholar 

  • Walaas SI, Greengard P (1984) DARPP-32, a dopamine- and adenosine 3′∶5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. I. Regional and cellular distribution in the rat brain. J Neurosci 4: 84–98

    PubMed  Google Scholar 

  • Watanabe H, Suda H, Sekihara S, Nomura Y (1987) D-1 type of dopamine autoreceptors are not involved in the regulation of dopamine synthesis in the striatum. Jpn Pharmacol 43: 327–330

    Google Scholar 

  • Willems JL, Buylaert WA, Lefebvre RA, Bogaert MG (1985) Neuronal dopamine receptors on autonomic ganglia and sympathetic nerves and dopamine receptors in the gastrointestinal system. Pharmacol Rev 37: 165–216

    PubMed  Google Scholar 

  • Wong DT, Bymaster FP (1983) LY 141865, a D2-dopamine agonist, increases acetylcholine concentration in rat corpus striatum. J Pharm Pharmacol 35: 328–329

    PubMed  Google Scholar 

  • Wong SH, Spencer RP, Hasain P (1978) Distribution and fate of 2-Br-82-alpha-ergocryptine and H-3-dihydroergokryptine in female rabbits. Fed Proc 37: 741

    Google Scholar 

  • Zikán V, Semonsky M (1960) Mutterkornalkaloide XVI. Einige N-(D-6-Methyl-isoergolenyl-8-)-, N-(D-6-Methylergolenyl-8-)-und N-(D-6-Methylergolin(I)-yl-8-)-N′-substituierte Harnstoffe. Coll Czech Chem Comm 25: 922–925

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Nils-Erik Andén in memoriam

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wachtel, H. Antiparkinsonian dopamine agonists: a review of the pharmacokinetics and neuropharmacology in animals and humans. J Neural Transm Gen Sect 3, 151–201 (1991). https://doi.org/10.1007/BF02259537

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02259537

Keywords

Navigation