Skip to main content
Log in

Induction of mature neuronal properties in immortalized neuronal precursor cells following grafting into the neonatal CNS

  • Published:
Journal of Neurocytology

Summary

RN33B, a conditionally-immortalized neuronal cell line, survives and differentiates following grafting into the neocortex and hippocampus of adult and neonatal rat hosts. We have previously shown that these cells assume shapes characteristic of endogenous neurons at the integration site and persist up to 24 weeks post-grafting. In the present study we use electron microscopy and immunohistochemistry to characterize such cells. Differentiated RN33B cells were identical in size to endogenous neurons and their sizes depended on the specific location of integration. RN33B cells in the granule cell layer of the dentate gyrus and CA3 and CA1 pyramidal layers were 9.0, 15.3, and 12.6 μm in diameter, respectively. Grafted RN33B cells received synapses from fibres of host origin. Differentiated cells expressed neuronal markers, but not glial markers. Some differentiated cells expressed glutamate bothin vitro andin vivo whereas undifferentiated cells did not. Grafted RN33B cells that differentiated with morphologies similar to CA3 pyramidal neurons and pyramidal cortical neurons expressed Py antigen, a neuronal marker that is differentially expressed in endogenous large pyramidal neurons of the cerebral cortex and large pyramids of hippocampal field CA3. This Py immunoreactivity was region-specific and corresponded to the endogenous pattern of Py immunostaining. Collectively, these data indicate that RN33B cells are capable of region-specific differentiation and have the potential to integrate functionally into the host CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bernstein, J. J. &Goldberg, W. J. (1989) Graft derived reafferentation of host spinal cord is not necessary for amelioration of lesion-induced deficits: possible role of migrating grafted astrocytes.Brain Research Bulletin,22, 139–46.

    Google Scholar 

  • Björklund, A. &Stenevi, U. (1984). Intracerebral neural implants: neural replacement and reconstruction of damaged circuitries.Annual Review of Neuroscience 7, 229–308

    Google Scholar 

  • Björklund, A., Lindvall, O., Issacson, O., Brundin, P., Wictorin, K., Strecker, R. E., Clarke, D. J., &Dunnett, S. B. (1987) Mechanism of action of intracerebral neural implants: studies on nigral and striatal grafts to the lesioned striatum.Trends in Neurosciences 10, 509–16.

    Google Scholar 

  • Brewer, G. J., &Cotman, C. W. (1989) Survival and growth of hippocampal neurons in defined medium at low density: advantages of a sandwich culture technique or low oxygen.Brain Research 494, 65–74.

    Google Scholar 

  • Cepko, C. L. (1989) Immortalization of neural cells via retrovirus-mediated oncogene transduction.Annual Review of Neuroscience 12, 47–65.

    Google Scholar 

  • Eaton, M. J., Staley, J. K., Globus, M. Y.-T. &Whittemore, S. R. (1995) Developmental regulation of early serotonergic neuronal differentiation: the role of brain-derived neurotrophic factor and membrane depolarization.Developmental Biology 170, 169–82.

    Google Scholar 

  • Fisher, L. J., Jinnah, H. A., Kale, L. C., Higgins, G. A. &Gage, F. H. (1991) Survival and function of intrastriatally grafted primary fibroblasts genetically modified to produce L-dopa.Neuron 6, 371–80

    Google Scholar 

  • Frank, E., &Wenner, P. (1993) Environmental specification of neuronal connectivity.Neuron 10, 779–85.

    Google Scholar 

  • Freed, C. R., Breeze, R. E., Rosenberg, N. L., Schneck, S. T., Kriek, E., Qi, J.-X., Lone, T., Zhang, Y.-B., Snyder, J. A., Wells, T. H., Ramic, L. O., Thompson, L., Mazziotta, J. C., Huang, S. C., Grafton, S. T., Brooks, D., Sawle, G., Schroter, G. &Ansari, A. A. (1992) Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson's disease.New England Journal of Medicine 327, 1549–55.

    Google Scholar 

  • Gage, F. H., Ray, J. &Fisher, L. J. (1995) Isolation, characterization and use of stem cells from the CNS.Annual Review of Neuroscience 18, 159–92

    Google Scholar 

  • Gao, W.-Q. &Hatten, M. E. (1994) Immortalizing oncogenes subvert the establishment of granule cell identity in developing cerebellum.Development 120, 1059–70.

    Google Scholar 

  • Gash, D. M., Collier, T. J., &Sladek, J. R. (1985) Neural transplantation: a review of recent developments and potential applications to the aged brain.Neurobiology of Aging 6, 131–50.

    Google Scholar 

  • Goodman, C. S. &Shatz, C. J. (1993) Developmental mechanisms that generate precise patterns of neuronal connectivity.Neuron 10 (Suppl.), 77–98.

    Google Scholar 

  • Helper, J. R., Toomim, C. S., McCarthy, K. D., Conti, F., Battaglia, G., Rustioni, A. &Petrusz, P. (1988) Characterization of antisera to glutamate and aspartate.Journal of Histochemistry and Cytochemistry 36, 13–22.

    Google Scholar 

  • Hoffer, B. J. &Olsen, L. (1991) Ethical issues in brain-cell transplantation.Trends in Neurosciences 14, 384–8.

    Google Scholar 

  • Horellou, P., Brundin P., Kalen, P., Mallet, J. &Björklund, A. (1990)In vivo release of DOPA and dopamine from genetically engineered cells grafted to the denervated rat striatum.Neuron 5, 393–402.

    Google Scholar 

  • Iacovitti, L. (1991) Effects of a novel differentiation factor on the development of catecholamine traits in noncatecholamine neurons from various regions of the rat brain: studies in tissue culture.Journal of Neuroscience 11, 2403–9.

    Google Scholar 

  • Kasai, H., Fukuda, J., &Segawa, K. (1987) Transformation of glial cells in mouse embryonic brain cellin vitro with simian virus 40.Neuroscience Letters 76, 239–44.

    Google Scholar 

  • Kesslak, J. P., Nieto-Sampedro, M., Globus, J. &Cotman, C. W. (1986) Transplants of purified astrocytes promote behavioural recovery after frontal cortex ablation.Experimental Neurology 92, 377–90.

    Google Scholar 

  • Landis, S. C. (1990) Target regulation of neurotransmitter phenotypes.Trends in Neurosciences 13, 344–50.

    Google Scholar 

  • Landis, S. C. &Keefe, D. (1983) Evidence for neurotransmitter plasticityin vivo: developmental changes in properties of cholinergic sympathetic neurons.Developmental Biology 98, 349–72.

    Google Scholar 

  • Letourneau, P. C., Condic, M. L. &Snow, D. M. (1994) Interactions of developing neurons with the extracellular matrix.Journal of Neuroscience 14, 915–28.

    Google Scholar 

  • Lindvall, O., Brundin, P., Widner, H., Rehncrona, S., Gustavi, B., Frackowiak, R., Leenders, K. L., Sawle, G., Rothwell, J. C., Marsden, C. D. &Björklund, A. (1990) Grafts of fetal dopamine neurons survive and improve motor function in Parkinson's disease.Science 247, 574–7.

    Google Scholar 

  • Nicholas, A. P., Cuello, A. C., Goldstein, M. &Hökfelt, T. (1990) Glutamate-like immunoreactivities in medulla oblongata catecholamine/substance P neurons.Neuroreport 1, 235–8.

    Google Scholar 

  • Nicholas, A. P., Pieribone, V. A., Arvidsson, U. &Hökfelt, T. (1992) Serotonin-, substance P- and glutamate/aspartate-like immunoreactivities in medullo-spinal pathways of rat and primate.Neuroscience 48, 545–59.

    Google Scholar 

  • O'leary, D. D. M. &Koester, S. E. (1993) Development of projection neuron types, axon pathways, and patterned connections of the mammalian cortex.Neuron 10, 991–1006.

    Google Scholar 

  • Onifer, S. M., White, L. A., Whittemore, S. R. &Holets, V. R. (1993a)In vitro strategies for identifying transplanted primary CNS tissue and neuronal cell lines.Cell Transplantation 2, 131–49.

    Google Scholar 

  • Onifer, S. M., Whittemore, S. R. &Holets, V. R. (1993b) Variable morphological differentiation of a raphederived neuronal cell line following transplantation into the adult rat CNS.Experimental Neurology 122, 130–42.

    Google Scholar 

  • Patterson, P. H. &Chun, L. L. Y. (1977) The induction of acetylcholine synthesis in primary cultures of dissociated rat sympathetic neurons.Developmental Biology 56, 263–80.

    Google Scholar 

  • Patterson, P. H. &Nawa, H. (1993) Neuronal differentiation factors/cytokines and synaptic plasticity.Cell 72/Neuron 10 (Suppl.), 123–37.

    Google Scholar 

  • Perlow, M. J., Freed, W. J., Seiger, Å., Olson, L., &Wyatt, R. J. (1979) Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system.Science,204, 643–7.

    Google Scholar 

  • Peters, A., Palay, S. L. &Webster, H. D. (1991)The Fine Structure of the Nervous System. Neurons and their Supporting Cells, 3rd ed. New York: Oxford University Press.

    Google Scholar 

  • Rao, M. S., Landis, S. C. &Patterson, P. H. (1990) The cholinergic neuronal differentiation factor from heart cell conditioned medium is different from cholinergic factors in sciatic nerve and spinal cord.Developmental Biology 139, 65–74.

    Google Scholar 

  • Rao, M. S., Tyrrell, S., Landis, S. C. &Patterson, P. H. (1992) Effects of ciliary neurotrophic factor (CNTF) and depolarization on neuropeptide expression in cultured sympathetic neurons.Developmental Biology 150, 281–93.

    Google Scholar 

  • Renfranz, P. J., Cunningham, M. G. &McKay, R. D. G. (1991) Region-specific differentiation of the hippocampal stem cell line HiB5 upon implantation into the developing mammalian brain.Cell 66, 713–29.

    Google Scholar 

  • Romijn, H. J., Huizen, F. V. &Walters, P. S. (1984) Towards an improved serum-free, chemically defined medium for long-term culturing of cerebral cortex tissue.Neuroscience Behavior Review 8, 301–34.

    Google Scholar 

  • Segal, M., Greenberg, B., &Milgram, N. W. (1986) A functional analysis of connections between grafted septal neurons and a host hippocampus.Progress in Brain Research 71, 349–58.

    Google Scholar 

  • Seiger, Å. (1985) Preparation of immature central nervous system regions for transplantation. InNeural Grafting in the Mammalian CNS (edited byBjörklund, A. &Stenevi, U.) pp. 71–7. Amsterdam: Elsevier.

    Google Scholar 

  • Shihabuddin, L. S., Hertz, J. A., Holets, V. R. &Whittemore, S. R. (1995) The adult CNS retains the potential to direct region-specific differentiation of a transplanted neuronal precursor cell line.Journal of Neuroscience 15, 6666–78.

    Google Scholar 

  • Shimohama, S., Rosenberg, M. B., Fagan, A. M., Wolff, J. A., Short, M. P., Breakefield, X. O., Friedmann, T., &Gage, F. H. (1989). Grafting genetically modified cells into the rat brain: characteristics ofE. coli β-galactosidase as a reporter gene.Molecular Brain Research 5, 271–8.

    Google Scholar 

  • Snyder, E. Y., Deitcher, D. L., Walsh, C., Arnold-Aldea, S., Hartwieg, E. A. &Cepko, C. L. (1992) Multipotent neural cell lines can engraft and participate in development of mouse cerebellum.Cell 66, 33–51.

    Google Scholar 

  • Stichel, C. C., &Müller, H. W. (1992) Expression of inherent neuronal shape characteristics after transient sensitivity to epigenetic factors.Developmental Brain Research 68, 149–62.

    Google Scholar 

  • White, L. A., Eaton, M. J., Castro, M. C., Klose, K. J., Globus, M. Y., Shaw, G. &Whittemore, S. R. (1994) Distinct regulatory pathways control neurofilament expression and neurotransmitter synthesis in immortalized serotonergic neurons.Journal of Neuroscience 14, 6744–53.

    Google Scholar 

  • Whittemore, S. R. &White, L. A. (1993) Target regulation of neuronal differentiation in a temperature-sensitive cell line derived from medullary raphe.Brain Research 615, 27–40.

    Google Scholar 

  • Whittemore, S. R., White, L. A., Shihabuddin, L. S. &Eaton, M. J. (1995) Phenotypic diversity in neuronal cell lines derived from raphe nucleus by retroviral transduction.Methods: A Companion to Methods in Enzymology 7, 285–93.

    Google Scholar 

  • Widner, H. &Brudin, P. (1988) Immunological aspects of grafting in the mammalian central nervous system. A review and speculative synthesis.Brain Research Reviews 13, 287–324.

    Google Scholar 

  • Widner, H., Tetrud, J., Rehngrona, S., Snow, B., Brundin, P., Gustavii, B., Björklund, A., Lindvall, O. &Langston, J. W. (1992) Bilateral fetal mesencephalic grafting in two patients with Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).The New England Journal of Medicine 237, 1556–63.

    Google Scholar 

  • Woodhams, P. L., Webb, M., Atkinson, D. J. &Seeley, P. J. (1989) A monoclonal antibody, Py, distinguishes different classes of hippocampal neurons.Journal of Neuroscience 9, 2170–81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shihabuddin, L.S., Brunschwig, J.P., Holets, V.R. et al. Induction of mature neuronal properties in immortalized neuronal precursor cells following grafting into the neonatal CNS. J Neurocytol 25, 101–111 (1996). https://doi.org/10.1007/BF02284789

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02284789

Keywords

Navigation