Skip to main content
Log in

Molecular genetics of human color vision

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

The significant advances in our understanding of color vision has been due to the convergence of information from behavioral and molecular genetic analyses. The molecular biology of the visual pigments; molecular genetic basis of variation in normal and abnormal color vision, and regulation of the genes at the LWS-MWS pigment gene locus are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Behringer, R. R., Ryan, T. M., Palmiter, R. D., Brinster, R. L., and Townes, T. M. (1990). Human α to β-globin gene switching in transgenic mice.Genes Dev. 4:380–389.

    PubMed  CAS  Google Scholar 

  • Bowmaker, J. K. (1991). The evolution of vertebrate visual pigments and photoreceptors. In Cronly-Dillon, J. R., and Gregory, R. L. (eds.).Vision and Visual Dysfunction, Vol. 2. Evolution of Eye and Visual Systems, Macmillan, London, p. 63.

    Google Scholar 

  • Caron, M. C., and Lefkowtiz, R. J. (1991). Model systems for the study of seven-transmembrane-segment receptors.Annu. Rev. Biochem. 60:653–688.

    PubMed  Google Scholar 

  • Chan, T., Lee, M., and Sakmar, T. P. (1992). Introduction of hydroxyl-bearing amino acids causes bathochromic spectral shifts in rhodopsin.J. Biol. Chem. 267:9478–9480.

    PubMed  CAS  Google Scholar 

  • Cicerone, C. M., and Nerger, J. L. (1989). The relative numbers of long-wavelength-sensitive and middle-wave-length-sensitive cones in the human fovea centralis.Vision Res. 19:115–128.

    Google Scholar 

  • Curcio, C. A., Allen, K. A., Sloan, K. R., Lerea, C. L., Hurley, J. B., Klock, I. B., and Milam, A. H. (1991). Distribution and morphology of human cone photoreceptors stained with anti-blue opsin.J. Comp. Neurol. 312:610–624.

    Article  PubMed  CAS  Google Scholar 

  • Dartnall, H. J. A., Bowmaker, J. K., and Mollon, J. D. (1983). Human visual pigments: Microspectrophotometric results from the eyes of seven persons.Proc. R. Soc. Lond. Ser. B 220:115–130.

    CAS  Google Scholar 

  • Deeb, S. S., Lindsey, D. T., Hibiya, Y., Sanocki, E., Winderickx, J., Teller, D. Y., and Motulsky, A. G. (1992). Genotype-phenotype relationships in human red/green color vision defects: Molecular and psychophysical studies.Am. J. Hum. Genet. 51:687–700.

    PubMed  CAS  Google Scholar 

  • Deeb, S. S., Winderickx, J., and Motulsky, A. G. (1995). Correlation between Rayleigh match range in protans and deutans and the difference in λmax between hybrid pigments. In Drum, B. (ed.),Color Vision Deficiencies XII, Kluwer Academic, Dordrecht p. 119–125.

    Google Scholar 

  • Dohlman, G., Thorner, J., Caron, M., and Lefkowitz, R. (1991). Model systems for the study of seven-transmembranes-segment receptors.Annu. Rev. Biochem. 60:653–688.

    Article  PubMed  CAS  Google Scholar 

  • Drummond-Borg, M., Deeb, S. S., and Motulsky, A. G. (1989). Molecular patterns of X chromosome-linked color vision genes among 134 men of European ancestry.Proc. Natl. Acad. Sci. USA 86:983–987.

    PubMed  CAS  Google Scholar 

  • Dryja, T. P., McGee, T. L., Hahn, L. B., Cowley, G. S., Ollson, J. E., Reichel, E., Sandberg, M. A. and Berson, E. L., (1990). Mutations within the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa.N. Engl. J. Med. 323:1302–1307.

    PubMed  CAS  Google Scholar 

  • Eisner, A., and MacLeod, D. I. A. (1981). Flicker photometric study of chromatic adaptation: Selective suppression of cone inputs by colored backgrounds.J. Opt. Soc. Am. 71:705–717.

    PubMed  CAS  Google Scholar 

  • Elsner, A. E., and Burns, S. A. (1987). Classes of color normal observers.J. Opt. Soc. Am. 4:123.

    Google Scholar 

  • Enver, T., Raich, N., Ebens, A. J., Papayannopoulou, T., Constantini, F., and Stamatoyannopoulos, G. (1990). Developmental regulation of human fetal-to-adult globin gene switching in transgenic mice.Nature 344:309–313.

    Article  PubMed  CAS  Google Scholar 

  • Feil, R., Aubourg, P., Heilig, R., and Mandel, J. L. (1990). A 195-Kb cosmid walk encompassing the human Xq28 color vision pigment genes.Genomics 6:367–373.

    Article  PubMed  CAS  Google Scholar 

  • Fung, BK-K., and Stryer, L. (1980). Photolyzed rhodopsin catalyzes the exchange of GTP for bound GDP in retinal rod outer segments.Proc. Natl. Acad. Sci. USA 77:2500–2504.

    CAS  Google Scholar 

  • Fung, BK-K., Hurley, J. B., and Stryer, L. (1981). Flow of information in the light-triggered cyclic nucleotide cascade of vision.Proc. Natl. Acad. Sci. USA 78:152–156.

    PubMed  CAS  Google Scholar 

  • Hanscombe, O., Whyatt, D., Fraser, P., Yannoutsos, N., Greaves, D., Dillon, N., and Grosveld, F. (1991). Importance of globin gene order to correct developmental expression.Genes Dev. 5:1387–1374.

    PubMed  CAS  Google Scholar 

  • Henderson, R. (1977). The purple membrane fromHalobacterium holobium.Annu. Rev. Biophys. Bioeng. 6:87–109.

    Article  PubMed  CAS  Google Scholar 

  • Hurvich, L. M. (1972). Color vision deficiencies. In Jameson, D., and Hurich, L. M. (eds.),Handbook of Sensory Physiology, Vol. Vii/4, Springer-Verlag, Berlin, p. 581.

    Google Scholar 

  • Ibbotson, R. E., Hunt, D. M., Bowmaker, J. K., and Mollon, J. D. (1992). Sequence divergence and copy number of the middle- and long-wave photopigments in Old World monkeys.Proc. Roy. Soc. Lond. B 247:145–154.

    CAS  Google Scholar 

  • Jacobs, G. H. (1983). Within-species variation in visual capacity among squirrel monkeys (Saimiri sciureus): Sensitivity difference.Vision Res. 23:239–248.

    PubMed  CAS  Google Scholar 

  • Jacobs, G. H. (1984). Within-species variation in visual capacity among squirrel monkeys (Saimiri sciureus): Color vision.Vision Res. 24:1267–1277.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, G. H., and Neitz, J. (1987). Inheritance of color vision in a New World monkey (Saimiri sciureus).Proc. Natl. Acad. Sci. USA 84:2545–2549.

    PubMed  CAS  Google Scholar 

  • Jacobs, G. H., and Neitz, J. (1993). Electrophysiological estimates of individual variation in the L/M cone ratio. In Drum, B. (ed.).Color Vision Deficiencies XI. Proc. Int. Symp. Color Vision Defic., Sydney, 1991, Kluwer, Dordrecht, pp. 107–112.

    Google Scholar 

  • Jaeger, W. (1972). Genetics of congenital colour deficiencies. In Autrum, V. H., Jung, R., Loewenstein, D., McKay, M., and Teuber, H. L. (eds.),Handbook of Sensory Physiology, Springer-Verlag, Heidelberg, p. 625.

    Google Scholar 

  • Jorgensen, A. L., Deeb, S., and Motulsky, A. G. (1990). Molecular genetics of X chromosome-linked color vision among populations of African and Japanese ancestry: High frequency of a shortened red pigment gene among Afro-Americans.Proc. Natl. Acad. Sci. USA 87:6512–6516.

    PubMed  CAS  Google Scholar 

  • Kosower, E. M. (1988). Assignment of groups responsible for the ‘opsin shift’ and light absorptions of rhodopsin and red, green, and blue iodopsins (cone pigments).Proc. Natl. Acad. Sci. USA 85:1076–1080.

    PubMed  CAS  Google Scholar 

  • Krill, A. E., Smith, V. C., and Pokorny, J. (1971). Further studies supporting the identity of congenital tritanopia and hereditary dominant optic atrophy.Invest. Ophthalmol. 10:457–465.

    PubMed  CAS  Google Scholar 

  • Lewis, R. A., Holcomb, J. D., Bromley, W. C., Wilson, M. C., Roderick, T. H., and Hejtmancik, J. F. (1987). Mapping X-linked ophthalmic diseases. III. Provisional assignment of the locus for blue cone monochromacy to Xq28.Arch. Ophthalmol. 105:1055–1059.

    PubMed  CAS  Google Scholar 

  • Merbs, S. L., and Nathans, J. (1992a). Absorption spectra of human cone pigments.Nature 356:433–435.

    Article  PubMed  CAS  Google Scholar 

  • Merbs, S. L., and Nathans, J. (1992b). Absorption spectra of the hybrid pigments responsible for anomalous color vision.Science 258:464–466.

    PubMed  CAS  Google Scholar 

  • Merbs, S. L., and Nathans, J. (1992c). Photobleaching difference absorption spectra of human cone pigments: Quantitative analysis and comparison to other methods.Photochem. Photobiol. 56:869–881.

    PubMed  CAS  Google Scholar 

  • Merbs, S. L., and Nathans, J. (1993). Role of hydroxyl-bearing amino acids in differently tuning the adsorption spectra of the human red and green cone pigments.Photochem. Photobiol. 58:869–881.

    Google Scholar 

  • Mitchell, D. E., and Rushton, W. A. (1971). Visual pigments in dichromats.Vision Res. 11:1033–1043.

    PubMed  CAS  Google Scholar 

  • Miyake, Y., Yagasaki, K., and Ichikawa, H. (1985). Differential diagnosis of congenital tritanopia and dominantly inherited juvenile optic atrophy.Arch. Ophthalmol. 103:1496–1501.

    PubMed  CAS  Google Scholar 

  • Mollon, J. (1993). Mixing genes and mixing colors.Current Biol. 3:82–85.

    CAS  Google Scholar 

  • Mollon, J. D., and Jordan, G. (1988/1989). Eine evolutionare Interpretation des menschlichen Farbensehen.Die Farbe 35/36:139.

    Google Scholar 

  • Nathans, J., and Hogness, D. S. (1983). Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin.Cell 34:807–814.

    Article  PubMed  CAS  Google Scholar 

  • Nathans, J., Thomas, D., and Hogness, D. S. (1986a). Molecular genetics of human color vision: The genes encoding blue, green and red pigments.Science 232:193–202.

    PubMed  CAS  Google Scholar 

  • Nathans, J., Piantanida, T. P., Eddy, R. L., Shows, T. B., and Hogness, D. S. (1986b). Molecular genetics of inherited variation in human color vision.Science 232:203–210.

    PubMed  CAS  Google Scholar 

  • Nathans, J., Weitz, C. J., Agarwal, N., Nir, I., and Papermaster, D. S. (1989). Production of bovine rhodopsin by mammalian cell lines expressing cloned cDNA: Spectrophotometry and subcellular localization.Vision Res. 29:907–914.

    Article  PubMed  CAS  Google Scholar 

  • Nathans, J., Davenport, C. M., Maumenee, I. H., Heijtmancik, J. F., Litt, M., Loverien, E., Weleber, R., Bachynski, B., Zwas, F., Klingman, R., and Fishman, G. (1990). Molecular genetics of blue cone monochromacy.Science 245:831–838.

    Google Scholar 

  • Nathans, J., Merbs, S. L., Sung, C.-H., Weitz, C. J., and Wang, Y. (1992). Molecular genetics of human visual pigments.Annu. Rev. Genet. 26:403–424.

    Article  PubMed  CAS  Google Scholar 

  • Nathans, J., Maumenee I. H., Zrenner, E., Sadowski, B., Sharpe, L. T., Lewis, R. A.,et al. (1993). Genetic heterogeneity among blue-cone monochromats.Am. J. Hum. Genet. 53:987–1000.

    PubMed  CAS  Google Scholar 

  • Neitz, J., and Jacobs, G. H. (1990). Polymorphism in normal human color vision and its mechanism.Vision Res. 30:621–636.

    Article  PubMed  CAS  Google Scholar 

  • Neitz, J., and Jacobs, G. H. (1986). Polymorphism of the longwavelength cone in normal human color vision.Nature 323:623–625.

    Article  PubMed  CAS  Google Scholar 

  • Neitz, J., Neitz, M., and Jacobs, G. H. (1989). Analysis of fusion gene and encoded photopigment of colour-blind humans.Nature 342:679–682.

    Article  PubMed  CAS  Google Scholar 

  • Neitz, J., Neitz, M., and Jacobs, G. H. (1993). More than three different cone pigments among people with normal color vision.Vision Res. 33:117–122.

    Article  PubMed  CAS  Google Scholar 

  • Neitz, M., Neitz, J., and Jacobs, G. H. (1991). Spectral tuning of pigments underlying red-green color vision.Science 252:971–974.

    PubMed  CAS  Google Scholar 

  • Oprian, D. D., Asenjo, A. B., Lee, N., and Pelletier, S. L. (1991). Design, chemical synthesis, and expression of genes for the three human color vision pigments.Biochemistry 30:11367–11372.

    Article  PubMed  CAS  Google Scholar 

  • Piatanida, T. (1991). Genetics of inherited colour vision deficiencies. In Foster, D. H. (ed.),Inherited and Acquired Colour Vision Deficiencies, Vision and Visual Dysfunction, Vol. 7, CRC Press, Boca Raton, FL, pp. 98–99.

    Google Scholar 

  • Pokorny, J., Smith, V. C., and Verriest, G. (1979). Congenital color defects. In Pokorny, J., Smith, V. C., Verriest, G., and Pinckers, A. J. L. G. (eds.),Congenital and Acquired Color Vision Defects, Grune and Stratton, New York, p. 183.

    Google Scholar 

  • Stamatoyannopoulos, G. (1991). Human hemoglobin switching.Science 252:383.

    PubMed  CAS  Google Scholar 

  • Stryer, L. (1991). Visual excitation and recovery.J. Biol. Chem. 266:1071–1074.

    Google Scholar 

  • Van Heel, L., Went, L. N., and Van Norren, D. (1980). Frequency of tritan disturbances in a population study.Color Vision Defic. 5:256.

    Google Scholar 

  • Vollrath, D., Nathans, J., and Davis, R. W. (1988). Tandem array of human visual pigment genes at Xq28.Science 240:1669–1672.

    PubMed  CAS  Google Scholar 

  • Waaler, G. H. M. (1967). Heredity of two types of colour normal vision.Nature 215:406.

    PubMed  CAS  Google Scholar 

  • Wang, Y., Macke, J. P., Merbs, S. L., Zack, D., Klaunberg, B., Bennet, J., Gearhart, J., and Nathans, J. (1992). A locus control region adjacent to the human red and green visual pigment genes.Neuron 9:429–440.

    Article  PubMed  CAS  Google Scholar 

  • Weitz, C. J., Miyake, Y., Shinzato, K., Montag, E., Zrenner, E., Went, L. N., and Nathans, J. (1992). Human tritanopia associated with two amino acid substitutions in the blue sensitive opsin.Am. J. Hum. Genet. 50:498–507.

    PubMed  CAS  Google Scholar 

  • Weitz, C. J., Went, L., and Nathans, J. (1992b). Human tritanopia associated with a third amino acid substitution in the bluesensitive visual pigment.Am. J. Hum. Genet. 51:444–446.

    PubMed  CAS  Google Scholar 

  • Went, L. N., and Pronk, N. (1985). The genetics of tritan disturbances.Hum. Genet. 69:255–262.

    Article  PubMed  CAS  Google Scholar 

  • Wesner, M. F., Pokorny, J., Shevell, S. K., and Smith, V. C. (1991). Foveal cone detection statistics in color normals and dichromats.Vision. Res. 31:1021–1037.

    Article  PubMed  CAS  Google Scholar 

  • Williams, A. J., Hunt, D. M., Bowmaker, J. K., and Mollon, J. D. (1992). The polymorphic pigments of the marmoset: Spectral tuning and genetic basis.EMBO J. 11:2039–2045.

    PubMed  CAS  Google Scholar 

  • Winderickx, J., Battisti, L., Motulsky, A. G., and Deeb, S. S. (1992a). Selective expression of the human x-linked green opsin genes.Proc. Natl. Acad. Sci. USA 89:9710–9714.

    PubMed  CAS  Google Scholar 

  • Winderickx, J., Lindsey, D. T., Sanocki, E., Teller, D. Y., Motulsky, A. G., and Deeb, S. S. (1992b). Polymorphism in red photopigment underlies variation in colour matching.Nature 356:431–433.

    Article  PubMed  CAS  Google Scholar 

  • Winderickx, J., Sanocki, E., Lindsey, D. T., Teller, D. Y., Motulsky, A. G., and Deeb, S. S. (1992c). Defective colour vision associated with a missense mutation in the human green visual pigment gene.Nature-Genetics 1:251–256.

    PubMed  CAS  Google Scholar 

  • Winderickx, J., Battisti, L., Hibiya, Y., Motulsky, A. G., and Deeb, S. S. (1993). Haplotype diversity in the human red and green opsin genes: Evidence for frequent sequence exchange in exon 3.Hum. Mol. Genet. 2:1413–1421.

    PubMed  CAS  Google Scholar 

  • Yokoyama, S., and Yokoyama, R. (1989). Molecular evolution of human visual pigment genes.Mol. Biol. Evol. 6:186–197.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deeb, S.S., Motulsky, A.G. Molecular genetics of human color vision. Behav Genet 26, 195–207 (1996). https://doi.org/10.1007/BF02359380

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02359380

Key words

Navigation