Skip to main content
Log in

Nitric oxide signaling in invertebrates

  • Review
  • Published:
Invertebrate Neuroscience

Abstract

Nitric oxide (NO) is an unconventional neurotransmitter and neuromodulator molecule that is increasingly found to have important signaling functions in animals from nematodes to mammals. NO signaling mechanisms in the past were identified largely through experiments on mammals, after the discovery of NO's vasodilatory functions. The use of gene knock out mice has been particularly important in revealing the functions of the several isoforms of nitric oxide synthase (NOS), the enzyme that produces NO. Recent studies have revealed rich diversity in NO signaling. In addition to the well-established pathway in which NO activates guanylyl cyclase and cGMP production, redox mechanisms involving protein nitrosylation are important contributors to modulation of neurotransmitter release and reception. NO signaling studies in invertebrates are now generating a wealth of comparative information. Invertebrate NOS isoforms have been identified in insects and molluscs, and the conserved and variable amino acid sequences evaluated. Calcium-calmodulin dependence and cofactor requirements are conserved. NADPH diaphorase studies show that NOS is found in echinoderms, coelenterates, nematodes, annelids, insects, crustaceans and molluscs. Accumulating evidence reveals that NO is used as an orthograde transmitter and cotransmitter, and as a modulator of conventional transmitter release. NO appears to be used in diverse animals for certain neuronal functions, such as chemosensory signalin, learning, and development, suggesting that these NO functions have been conserved during evolution.

The discovery of NO's diverse and unconventional signaling functions has stimulated a plethora of enthusiastic investigations into its uses. We can anticipate the discovery of many more interesting and some surprising NO signaling functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arancio, O., Kiebler, M., Lee, C., Lev-Ram, V., Tsien, R., Kandel, E. and Hawkins, R. (1996) Nitric oxide acts directly in the presynaptic neuron to produce long-term potentiation in cultured hippocampal neurons.Cell,87, 1025–1035.

    Article  PubMed  CAS  Google Scholar 

  • Baumann, A., Frings, S., Godde, M., Seifert, R. and Kaupp U. (1994) Primary structure and functional expression of aDrosophila cyclic nucleotide-gated channel present in eyes and antennae.EMBO J.,13 (21), 5040–5050.

    PubMed  CAS  Google Scholar 

  • Bowman, J. W., Winterrowd, C. A., Friedman, A. R., Thompson, D. P., Klein, R. D., David, J. P., Maule, A. G., Blair, K. L. and Geary, T. G. (1995) Nitric oxide mediates the inhibitory effects of SDPNFLRFamide, a nematode FMRFamide-related neuropeptide inAscaris suum.J. Neurophysiol.,74, 1880–1888.

    PubMed  CAS  Google Scholar 

  • Bradley, J., Zhang, Y., Bakin, R., Lester, H., Ronnett, G. and Zinn, K. (1997) Functional expression of the heteromeric “olfactory” cyclic nucleotide-gated channel in the hippocampus: a potential effector of synaptic plasticity in brain neurons.J Neurosci.,17, 1993–2005.

    PubMed  CAS  Google Scholar 

  • Breer, H. and Shepherd, G. (1993) Implication of the NO/cGMP system for olfaction.TINS,16, 5–9.

    PubMed  CAS  Google Scholar 

  • Bredt, D. (1996) Targeting Nitric Oxide to its Targets.Proc. Soc. Exp. Biol. Med.,211, 41–48.

    PubMed  CAS  Google Scholar 

  • Bredt, D. and Snyder, S. (1992) Nitric oxide, a novel neuronal messenger.Neuron,8, 3–11.

    Article  PubMed  CAS  Google Scholar 

  • Bredt, D. and Snyder, S. (1994) Nitric Oxide: A physiologic Messenger Molecule.Ann. Rev. Biochem.,63, 175–195.

    Article  PubMed  CAS  Google Scholar 

  • Broillet, M-C. and Firestein, S. (1997) β Subunits of the olfactory cyclic nucleotide-gated channel form a nitric oxide activated Ca2+ channel.Neuron,18, 951–958.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, W., Bhan, I. and Lipton, S. (1996) Nitric oxide (NO.) stabilizes filopodia while nitrosonium donors (NO+) induce out-growth by rat retinal ganglion cellsin vitro.Soc. Neurosci. Abst.,22, 734.

    Google Scholar 

  • Cheng, W., Chen, V., Zhang, X. and Lipton, S. (1997) S-nitrosylation of putative critical regulatory sulfhydral groups in recombinant cyclic nucleotide-gated channels.Soc. Neurosci. Abst.,23, 1479.

    Google Scholar 

  • Chichery, R. and Chichery, M-P. (1994) NADPH-diaphorase in a cephalopod brain (Sepia): presence in an analogue of the cerebellum.NeuroReport,5, 1273–1276.

    PubMed  CAS  Google Scholar 

  • Chiel, H., Weiss, K. and Kupfermann, I. (1986) An identified histaminergic neuron modulates feeding motor circuitry inAplysia.J. Neurosci.,6, 2427–2450.

    PubMed  CAS  Google Scholar 

  • Colasanti, M., Lauro, G. M. and Venturini, G. (1995) NO in hydra feeding response.Nature,374, 505.

    Article  PubMed  CAS  Google Scholar 

  • Cooke, I. R. C., Edwards, S. L., and Anderson, C. R. (1994) The distribution of NADPH diaphorase activity and immunoreactivity to nitric oxide synthase in the nervous system of the pulmonate molluscHelix aspsersa.Cell & Tissue Research,277, 565–572.

    CAS  Google Scholar 

  • Davis, G. and Murphey, R. (1994) Long-term regulation of short term transmitter release properties: retrograde signaling and synaptic development.TINS,17, 9–13.

    PubMed  CAS  Google Scholar 

  • Dawson, T., Bredt, D., Fotuhi, M., Hwang, P. and Snyder, S. (1991) Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain tissues.Proc. Natl. Acad. Sci. USA,88, 7797–7801.

    Article  PubMed  CAS  Google Scholar 

  • Dawson, T. and Snyder, S. (1994) Gases as biological messengers, nitric oxide and carbon dioxide in the brain.J. Neurosci.,14, 5147–5159.

    PubMed  CAS  Google Scholar 

  • Delaney, K., Gelperin, A., Fee, M., Flores, J., Gervais, R., Tank, D. and Kleinfeld, D. (1994) Waves and stimulus-modulated dynamics in an oscillating olfactory network.Proc. Natl. Acad. Sci.,91, 669–673.

    Article  PubMed  CAS  Google Scholar 

  • Elofsson, R., Carlberg, M., Moroz, L., Nezlin, L. and Sakharov, D. (1993). Is nitric oxide produced by invertebrate neurones?NeuroReport,4, 279–282.

    PubMed  CAS  Google Scholar 

  • Elphick, M., Green, I. and O'Shea, M. (1993) Nitric oxide synthesis and action in an invertebrate brain.Brain Research,619, 344–346.

    Article  PubMed  CAS  Google Scholar 

  • Elphick, M., Kemenes, G., Staras, K. and O'Shea, M. (1995a) Behavioral role for nitric oxide in chemosensory activation of feeding in a mollusc.J. Neurosci. 15 (11), 7653–7664.

    PubMed  CAS  Google Scholar 

  • Elphick, M., Rayne, R. C., Riveros-Morena, V., Moncada, S. and O'Shea, M. (1995b) Nitric oxide synthesis in locust olfactory interneurons.J. Exp. Biol.,198, 821–829.

    PubMed  CAS  Google Scholar 

  • Elphick, M., Williams, L. and O'Shea, M. (1996) New features of the locust optic lobe: evidence of a role for nitric oxide in insect vision.J. Exp. Biol.,199, 2395–2407.

    PubMed  CAS  Google Scholar 

  • Elphick, M. and Jones, J. (1997) Identification of neuronal targets of nitric oxide in an insect brain.Soc. Neurosci. Abst.,23, 1788.

    Google Scholar 

  • Ewer, J., De Vente, J and Truman, J. (1994) Neuropeptide induction of cyclic GMP increases in the insect CNS, Resolution at the level of single identifiable neurons.J. Neurosci.,14 (2), 7704–7712.

    PubMed  CAS  Google Scholar 

  • Froggett, S. and Leise, E. (1997) Endogenous nitric oxide inhibits metamorphosis in a larval mollusc.Soc. Neurosci. Abst.,23, 1234.

    Google Scholar 

  • Garthwaite, J. (1991) Glutamate, nitric oxide and cell-cell signaling in the nervous system.TINS,14 (2), 60–67.

    PubMed  CAS  Google Scholar 

  • Gelperin, A. (1994) Nitric oxide mediates network oscillations of olfactory interneurons in a terrestrial mollusc.Nature,369, 61–63.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs, S. and Truman, J. (1998) Nitric oxide and cyclic GMP regulate retinal patterning in the optic lobe ofDrosophila.Neuron,20, 83–93.

    Article  PubMed  CAS  Google Scholar 

  • Hope, B., Michael, J., Knigge, M. and Vincent, S. (1991) Neuronal NADPH diaphorase is a nitric oxide synthase.Proc. Natl. Acad. Sci. USA,88, 2811–2814.

    Article  PubMed  CAS  Google Scholar 

  • Jacklet, J. (1995) Nitric oxide is used as an orthograde cotransmitter at identified histaminergic synapses.J. Neurophysiol.,74, 891–895.

    PubMed  CAS  Google Scholar 

  • Jacklet, J. and Gruhn, M. (1994a). Co-localization of NADPH-diaphorase and myomodulin in synaptic glomeruli ofAplysia.NeuroReport,5, 1841–1844.

    PubMed  CAS  Google Scholar 

  • Jacklet, J. and Gruhn, M. (1994b) Nitric oxide as a putative transmitter inAplysia, neural circuits and membrane effects.Netherlands J. Zool.,44 (3–4) 524–534.

    Google Scholar 

  • Jai, L., Bonaventura, C., Bonaventura, J. and Stamler, J. (1996) S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control.Nature,380, 221–226.

    Article  Google Scholar 

  • Johansson, K., Wallén, R. and Hallberg, E. (1996) Electron microscopic localization and experimental modification of NADPH-diaphorase activity in crustacean sensory axons.Invertebrate Neuoscience,2, 167–173.

    Article  CAS  Google Scholar 

  • Kendrick, K., Guevara-Guzzman, R., Zorrilla, J., Hinton, M., Broad, K., Mimmiack, M. and Ohkura, S. (1997) Formation of olfactory memories mediated by nitric oxide.Nature,388, 670–674.

    Article  PubMed  CAS  Google Scholar 

  • Koh, H. and Jacklet, J. (1997) Nitric oxide induced cGMP-IR in the serotonergic metacerebral cell ofAplysia.Soc. Neurosci. Abst.,23, 1234.

    Google Scholar 

  • Korneev, S., Piper, M., Korneev, E., Phillips, R. and O'Shea, M. (1997) Multiple NOS isoforms in the CNS of the snailLymnaea: cloning expression and localization.Soc. Neurosci. Abst.,23, 1787.

    Google Scholar 

  • Kuzin, B., Roberts, I., Peunova, N. and Enikolopov, G. (1996) Nitric oxide regulates cell proliferation duringDrosophila.Cell,87, 639–649.

    Article  PubMed  CAS  Google Scholar 

  • Lancaster, J. (1994) Simulation of the diffusion and reaction of endogenously produced nitric oxide.Proc. Natl. Acad. Sci. USA,91, 8137–8141.

    Article  PubMed  CAS  Google Scholar 

  • Lancaster, J. (1997) A tutorial on the diffusibility and reactivity of free nitric oxide.Nitric Oxide,1, 18–30.

    Article  PubMed  CAS  Google Scholar 

  • Leake, L. and Moroz, L. (1996) Putative nitric oxide synthase (NOS)-containing cells in the central nervous system of the leech,Hirudo medicinalis: NADPH-diaphorase histochemistry.Brain Research,723, 115–124.

    Article  PubMed  CAS  Google Scholar 

  • Lev-Ram, V., Makings, L., Keitz, P., Kao, J. and Tsien, R. (1995) Long-term depression in cerebellar Purkinje neurons results from coincidence of nitric oxide and depolarization-induced Ca2+-transients.Neuron,15, 407–415.

    Article  PubMed  CAS  Google Scholar 

  • Lev-Ram, V., Jiang, T., Wood, J., Lawarence, D. S., and Tsien, R. Y. (1997) Synergies and coincidence requirements between NO, cGMP, and Ca2+ in the induction of cerebellar long-term depression.Neuron,18, 1025–1038.

    Article  PubMed  CAS  Google Scholar 

  • Lincoln, T. and Cornwell, T. (1993) Intracellular cyclic GMP receptor proteins.FASEB J.,7, 328–338.

    PubMed  CAS  Google Scholar 

  • Lin, Y-Q. and Bennett, M. (1994) Nitric oxide modulation of quantal secretion in chick ciliary ganglia.J. Physiol.,481, 385–394.

    PubMed  CAS  Google Scholar 

  • Lin, M. F., Leise, E. M. (1996) NADPH-diaphorase activity changes during gangliogenesis and metamorphosis in the gastropod molluscIlyanassa obsoleta.J. Comp. Neurol.,374, 194–203.

    Article  PubMed  CAS  Google Scholar 

  • Linden, D., Dawson, T. and Dawson, V. (1995) An evaluation of the nitric oxide/cGMP/cGMP-dependent protein kinase cascade in the induction of cerebellar long-term depression in culture.J. Neurosci.,15 (7), 5099–5105.

    Google Scholar 

  • Lipton, S., Choi, Y., Pan, Z., Lei, S., Chen, H., Sucher, N., Loscalzo, J., Singel, D. and Stamler, J. (1993) A redox-based mechanism for the neuroprotective and neurodistructive effects of nitric oxide and related nitroso-compounds.Nature,364, 626–631.

    Article  PubMed  CAS  Google Scholar 

  • Luo, D., Leung, E. and Vincent, S. (1992) Nitric oxide-dependent efflux of cGMP in rat cerebellar cortex, anin vivo microdialysis study.J. Neurosci.,14, 263–271.

    Google Scholar 

  • Martinez, A. (1995) Nitric oxide synthase in invertebrates.Hitochemical Journal,27, 770–776.

    CAS  Google Scholar 

  • Meffert, M., Calakos, N., Scheller, R. and Schulman, H. (1996) Nitric oxide modulates synaptic vesicle docking/fusion reactions.Neuron,16, 1229–1236.

    Article  PubMed  CAS  Google Scholar 

  • Meleshkevitch, E., Budko, D., Norby, S., Moroz, L. and Hadfield, M. (1997) Nitric oxide dependent modulation of the metamorphosis in molluscPeeteilla sibogae (gastropoda, nudibranchia).Soc. Neurosci. Abst.,23, 1233.

    Google Scholar 

  • Meulemans, A., Mothet, J., Schirar, A., Fossier, P., Tauc, L. and Baux, G. (1995) A nitric oxide synthase activity is involved in the modulation of acetylcholine release inAplysia ganglion neurons: a histological, voltammetric and electrophysiological study.Neurosci.,69 (3), 985–995.

    Article  CAS  Google Scholar 

  • Moroz, L., Winlow, W., Turner, R., Bulloch, A., Lukowiak, K. and Syed, N. (1994) Nitric oxide synthase-immunoreactive cells in the CNS and periphery ofLymnaea.NeuroReport,5, 1277–1280.

    PubMed  CAS  Google Scholar 

  • Moroz, L. L., and Gillette, R. (1995) From polyplacophora to cephalopoda: A comparative analysis of nitric oxide signalling inMollusca.Acta Biologica Hungarica,46, 169–182.

    PubMed  CAS  Google Scholar 

  • Moroz, L. L. and Gillette, R. (1996) NADPH-diaphorase localization in the CNS and peripheral tissues of the predatory sea-slugPleurobranchaea californica.J Comp Neurol.,367, 607–622.

    Article  PubMed  CAS  Google Scholar 

  • Moroz, I., Chen, D., Gillette, M. and Gillette, R. (1996) Nitric oxide synthase activity in the molluscan CNS.J.NNeurochem.,66 (2), 873–876.

    Article  CAS  Google Scholar 

  • Mothet, J. P., Fossier, P., Tauc, L. and Baux, G. (1996a) NO decreases evoked quantal Ach release at a synapse ofAplysia by a mechanism independent of Ca2+ influx and protein kinase G.J Physiol.,493, 769–784.

    PubMed  CAS  Google Scholar 

  • Mothet, J.P., Fossier, P., Tauc, L. and Baux, G. (1996b) Opposite actions of nitric oxide on cholinergic synapses: Which pathways.Proc. Natl. Acad. Sci. USA,93, 8721–8726.

    Article  PubMed  CAS  Google Scholar 

  • Müller, U. (1994) Calcium/calmodulin-dependent nitric oxide synthase inApis melifera andDrosophila melanogaster.Eur. J. Neurosci.,6, 1362–1370.

    Article  PubMed  Google Scholar 

  • Müller, U. (1997) The nitric oxide system in insects.Prog. Neurobiol.,51, 363–381.

    Article  PubMed  Google Scholar 

  • Müller, U. and Bicker, G. (1994) Calcium-activated release of nitric oxide and cellular distribution of nitric oxide-synthesizing neurons in the nervous system of the locust.J. Neurosci.,14, 7521–7528.

    PubMed  Google Scholar 

  • Nighorn, A., Gibson, N., Hildebrand, J. and Morton, D. (1997) Investigations of nitric oxide synthase and soluble guanylyl cyclase in the olfactory system ofManduca sexta.Soc. Neurosci. Abst.,23, 1828.

    Google Scholar 

  • Nussenzveig, R., Bentley, D. and Ribeiro, J. (1995) Nitric oxide loading of the salivary nitric oxide-carrying hemoprotein (nitrophorins) in the blood-sucking bugRhodnius prolixus.J. Exp. Biol.,198, 1093–1098.

    PubMed  CAS  Google Scholar 

  • Ogunshola, O., Picot, J., Piper, M., Korneev, S. and O'Shea, M. (1996) Molecular analysis of the NO-cGMP signalling pathway in insect and molluscan CNS.Soc. Neurosci. Abst.,21, 631.

    Google Scholar 

  • O'Shea, M. and Park, J-H. (1996) Nitric oxide and orthograde neurotransmission in the CNS of the snailLymnaea stagnalis.Soc. Neurosci. Abst.,22, 363.

    Google Scholar 

  • Pan, Z., Segal, M. and Lipton, S. (1996) Nitric oxide-related species inhibit evoked neurotransmission but enhance spontaneous miniature synaptic currents in central neuronal cultures.Proc. Natl. Acad. Sci. USA,93, 15423–15428.

    Article  PubMed  CAS  Google Scholar 

  • Rand, M. and Li, C. (1995) Nitric oxide as a neurotransmitter in peripheral nerves: nature of transmitter and mechanism of transmission.Annu. Rev. Physiol.,57, 659–682.

    Article  PubMed  CAS  Google Scholar 

  • Regulski, M. and Tully, T. (1995) Molecular and biochemical characterization of dNOS, aDrosophila Ca2+/calmodulin-dependent nitric oxide synthase.Proc. Natl. Acad. Sci. USA,92, 9072–9076.

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro, J. M. C., Hazzard, J. M. H., Nussenzveig, R. H., Champagne, D. E., and Walker, F. A. (1993) Reversible binding of nitric oxide by a salivary heme protein from a bloodsucking insect.Science,260, 539–541.

    PubMed  CAS  Google Scholar 

  • Robertson, J., Bonaventura, J. and Kohm, A. (1995) Nitric oxide synthase inhibition blocks octopus touch learning without producing sensory or motor dysfunction.Proc. R. Soc. Lond. B.,261, 167–172.

    CAS  Google Scholar 

  • Salleo, A., Musci, G., Barra, P. F. A. and Calabrese, L. (1996) The discharge mechanism of acontial nematocytes involves the release of nitric oxide.J. Exp. Biol.,199, 1261–1267.

    PubMed  CAS  Google Scholar 

  • Savchenko, A., Barnes, S. and Kramer, R. (1997) Cyclic-nucleotidegated channels mediate synaptic feedback by nitric oxide.Nature,390, 694–698.

    PubMed  CAS  Google Scholar 

  • Sawada, M. and Ichinose, M. (1996) Nitric oxide donor sodium nitroprusside inhibits the acetylcholin-induced K+ current in identifiedAplysia neurons.J. Neurosci. Res.,44, 21–26.

    Article  PubMed  CAS  Google Scholar 

  • Sawada, M., Ichinose, M. and Hara, N. (1995) Nitric oxide induces an increased Na+ conductance in identified neurons ofAplysia.Brain Research,670, 248–256.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, H. and Walter, U. (1994) NO at Work.Cell,78, 919–925.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, H., Lohmann, S. and Ulrich, W. (1993) The nitric oxide and cGMP signal transduction system, regulation and mechanism of action.Biochim. Biophys. Acta.,1178, 153–175.

    Article  PubMed  CAS  Google Scholar 

  • Scholtz, N., Goy, M., Truman, J., and Graubard, K. (1996) Nitric oxide and peptide neurohormones activate cGMP synthesis in the crab stomatogastric nervous system.J. Neurosci.,16 (5), 1614–1622.

    Google Scholar 

  • Scholtz, S., Truman, J. and Graubard, K. (1997) Modulation of flexible motor circuits by nitric oxide and cGMP.Soc. Neurosci. Abst.,23, 1787.

    Google Scholar 

  • Shah, S. and Hyde, D. (1995) TwoDrosophila genes that encode the α and β subunits of the brain soluble guanylyl cyclase.J. Biol. Chem.,270 (25), 15368–15376.

    Article  PubMed  CAS  Google Scholar 

  • Shuman, E. and Madison, D. (1994) Nitric oxide and synaptic function.Annu. Rev. Neurosci.,17, 153–183.

    Article  Google Scholar 

  • Snyder, S. H. (1995) No endothelial NO.Nature,377, 196–197.

    Article  PubMed  CAS  Google Scholar 

  • Solomon, E.I. (1981) Binuclear copper active site. InCopper Proteins, G. Spiro, Ed. Wiley-Interscience Publ., pp. 41–108.

  • Son, H., Hawkins, R., Kelsey, M., Kiebler, M., Huang, P., Fishman, M., and Kandel, E. (1996) Long-term potentiation is reduced in mice that are doubly mutant in endothelial and neuronal nitric oxide synthase.Cell,87, 1015–1023.

    Article  PubMed  CAS  Google Scholar 

  • Stamler, J. (1994) Redox signaling, nitrosylation and related target interactions of nitric oxide.Cell,78, 931–936.

    Article  PubMed  CAS  Google Scholar 

  • Stamler, J., Singel, D. and Loscalzo, J. (1992) Biochemistry of nitric oxide and its redox-activated forms.Science,258, 1898–1902.

    PubMed  CAS  Google Scholar 

  • Stamler, J., Toone, E. J., Lipton, S. A., and Sucher, N. J. (1997) (S)NO signals: Translocation, regulation, and a consensus motif.Neuron,18, 691–696.

    Article  PubMed  CAS  Google Scholar 

  • Stengl, M. and Zintl, R. (1996) NADPH Diaphorase activity in the antennae of the hawkmothManduca sexta.J. Exp. Biol.,199, 1063–1072.

    PubMed  CAS  Google Scholar 

  • Sullivan, B. M., Wong, S. and Schuman, E. M. (1997) Modification of hippocampal synaptic proteins by nitric oxide-stimulated ADP ribosylation.Learning & Memory,3, 414–424.

    CAS  Google Scholar 

  • Teyke, T. (1996) Nitric oxide, but not serotonin, is involved in acquisition of food-attraction conditioning in the snailHelix pomatia.Neuroscience Lett.,206, 29–32.

    Article  CAS  Google Scholar 

  • Truman J., DeVente, J. and Ball, E. (1996) Nitric oxide-sensitive guanylate cyclase activity is associated with the maturational phase of neuronal development in insects.Development,122, 3949–3958.

    PubMed  CAS  Google Scholar 

  • Vincent, S. (1986) NADPH-diaphorase histochemistry and neurotransmitter coexistence. InHistochemistry, Modern Methods and Applications. P. Panula, H. Paivrainta & S. Soinila, Eds. Alan Lis, Inc., pp. 375–396.

  • Vincent, S. (1994) Nitric oxide, radical neurotransmitter in the central nervous system.Prog. Neurobiol.,42, 129–160.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, K., Shapiro, E. and Kupfermann, I. (1986) Modulatory synaptic actions of an identified histaminergic neuron on the serotonergic metacerebral cell ofAplysia.J. Neurosci.,6, 2393–2402.

    PubMed  CAS  Google Scholar 

  • Williams, C., Nordquist, D., and McLoon, S. (1994) Correlation of nitric oxide synthase expression with changing patterns of axonal projections in the developing visual system.J. Neurosci.,14, 1746–1755.

    PubMed  CAS  Google Scholar 

  • Wolf, G., Wurdig, S. and Schunzel, G. (1992) Nitric oxide synthase in rat brain is predominantly located at neuronal endoplasmic reticulum: an electronmicroscopic demonstration of NADPH diaphorase.Neurosci. Lett.,147, 63–66.

    Article  PubMed  CAS  Google Scholar 

  • Wood, J. and Garthwaite, J. (1994) Models of the diffusional spread of nitric oxide, implication for neural nitric oxide signalling and its pharmacological properties.Neuropharmacology,33, 1235–1244.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon W. Jacklet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacklet, J.W. Nitric oxide signaling in invertebrates. Invertebrate Neuroscience 3, 1–14 (1997). https://doi.org/10.1007/BF02481710

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02481710

Key Words

Navigation