Skip to main content
Log in

Receptor-mediated phagocytosis of myelin by macrophages and microglia: Effect of opsonization and receptor blocking agents

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Myelin is phagocytosed by microglia (MG) and to a somewhat lesser extent by peritoneal macrophages (Mϕ) in a dose- and time-dependent manner. In serum-free medium opsonization of rat myelin significantly enhances binding and ingestion, more by rat macrophages than by microglia. Furthermore the requirement for opsonization is not restricted to anti-myelin antibodies as the difference in the rate of myelin uptake by macrophages is largely eliminated when they are cultured in 10% fetal calf serum. Binding and ingestion of both myelin and opsonized myelin are inhibited to the same dose-dependent extent by zymosan, oxidized LDL, peroxidase-antiperoxidase (PAP), opsonized erythrocytes and the anti-CR3 antibody OX42 implicating lectin, scavenger, Fc and complement receptors in the phagocytosis of myelin. Thus while the differential uptake of myelin and opsonized myelin by macrophages would indicate a central role for the Fc receptor, binding inhibition studies implicate a range of membrane receptors which would obviate the need for antigen-antibody complexing to stimulate phagocytosis. Uptake of both myelin preparations by macrophages or microglia is stimulated by interferon-γ and inhibited by TGF-β, and the process of ingestion results in increased nitric oxide release and decreased superoxide production, the effect being more pronounced when myelin is opsonized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cuzner, M. L., Hayes, G. M., Newcombe, J., and Woodroofe, M. N. 1988. The nature of inflammatory components during demyelination in multiple sclerosis. Journal of Neuroimmunol 20:203–209.

    Article  CAS  Google Scholar 

  2. Goldenberg, P. Z., Kwon, E. E., Benjamins, J. A., Whitaker, J. N., Quarles, R. H., and Prineas, J. W. 1989. Opsonization of normal myelin by anti-myelin antibodies and normal serum. J. Neuroimmunol. 23:157–166.

    Article  PubMed  CAS  Google Scholar 

  3. Trotter, J., DeJong, L. D., and Smith, M. E. 1986. Opsonization with antimyelin antibody increases the uptake and intracellular metabolism of myelin in inflammatory macrophages. J. Neurochem. 47:779–789.

    Article  PubMed  CAS  Google Scholar 

  4. Smith, M. E. 1993. Phagocytosis of myelin by microglia in vitro. J. Neurosci. Res. 35:480–487.

    Article  PubMed  CAS  Google Scholar 

  5. Williams, K., Ulvestad, E., Waage, A., Antel, J. P., and Mclaurin, J. 1994. Activation of adult human derived microglia by myelin phagocytosis in vitro. J. Neurosci. Res. 38:433–443.

    Article  PubMed  CAS  Google Scholar 

  6. Norton, W. T., and Cammer, W. 1984. Chemical pathology of disease involving myelin. In: Pages 369–403, Morrell, P. (ed) In “Myelin”. Plenum, New York.

    Google Scholar 

  7. Hayes, G. M., Woodroofe, M. N., and Cuzner, M. L. 1988. Characterization of microglia isolated from adult human and rat-brain. J. Neuroimmunol. 19:177–189.

    Article  PubMed  CAS  Google Scholar 

  8. Ding, A. H., Nathan, C. F., and Stuehr, D. J. 1988. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J. Immunol. 141:2407–2412.

    PubMed  CAS  Google Scholar 

  9. Pick, E., and Mizel, D. 1981. Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. J. Immunol. Meth. 46:211–216.

    Article  CAS  Google Scholar 

  10. Loughlin, A. J., Woodroofe, M. N., and Cuzner, M. L. 1992. Regulation of Fc receptor and major histocompatibility complex antigen expression on isolated rat microglia by tumor-necrosis-factor, interleukin-1 and lipopolysaccharide—effects on interferon-gamma induced activation. Immunology 75:170–175.

    PubMed  CAS  Google Scholar 

  11. Krieger, M., Acton, S., Ashkenas, J., Pearson, A., Penman, M., and Resnick, D. 1993. Molecular flypaper, host defense, and atherosclerosis. J. Biol. Chem. 268:4569–4572.

    PubMed  CAS  Google Scholar 

  12. Endemann, G., Stanton, L. W., Madden, K. S., Bryant, C. M., White, R. T., and Protter, A. A. 1993. CD 36 is a receptor for oxidized low density lipoprotein. J. Biol. Chem. 268:11811–11816.

    PubMed  CAS  Google Scholar 

  13. Streit, W. J. and Kreutzberg, G. W. 1987. Lectin binding by resting and reactive microglia. J. Neurocytol. 16:249–260.

    Article  PubMed  CAS  Google Scholar 

  14. Schreiber, S., Perkins, S. L., Teitelbaum, S. L., Chappel, J., Stahl, P. D., and Blum, J. S. 1993. Regulation of mouse bone marrow macrophage mannose receptor expression and activation by protaglandin E and IFN-γ1. J. Immunol. 151:4973–4981.

    PubMed  CAS  Google Scholar 

  15. Kimberly, R. P., Tappe, N. J., Merriam, L. T., Redecha, P. B., Eddberg, J. C., Schwartzman, S., and Valinsky, J. E. 1989. Carbohydrates on human Fc receptors. J. Immunol. 142:3923–3930.

    PubMed  CAS  Google Scholar 

  16. Sanguedolce, M. V., Capo, C., Bouhamadan, M., Bongrand, P., Huang, C. K., and Mege, J. L. 1992. Zymosan induced tyrosine phosphorylations in human monocytes. J. Immunol. 151:405–414.

    Google Scholar 

  17. Aramaki, Y., Murai, M., and Tsuchiya, S. 1993. Contribution of N-acetyl-β-D-galactosamine-specific lectin to Fc receptor-mediated phagocytosis by mouse peritoneal macrophages. Immunology 79:403–407.

    PubMed  CAS  Google Scholar 

  18. Ulvestad, E., Williams, K., Vedeler, C., Antel, J., Nyland, H., Mork, S., and Matre, R. 1994. Reactive microglia in multiple sclerosis lesions have an increased expression of receptors for the Fc part of IgG. J. Neurol. Sci. 121:125–131.

    Article  PubMed  CAS  Google Scholar 

  19. Loughlin, A. J., Woodroofe, M. N., and Cuzner, M. L. 1993. Modulation of interferon-gamma-induced major histocompatibility complex class-11 and Fc-receptor expression on isolated microglia by transforming growth-factor-beta-1, interleukin-4, noradrenaline and glucocorticoids. Immunology 79:125–130.

    PubMed  CAS  Google Scholar 

  20. Corradi, S. B., Buchmuller-Rouller, Y., and Mauel, J. 1991. Phagocytosis enhances murine macrophage activation by interferon-and tumor necrosis factor-α. Eur. J. Immunol. 21:2553–2558.

    Google Scholar 

  21. Fabian, R. H., and Rea, H. C. 1993. Neuronal toxicity by macrophages in mixed braincell culture is augmented by antineuronal IgG and dependent upon nitric oxide synthesis. J. Neuroimmunol. 44:95–102.

    Article  PubMed  CAS  Google Scholar 

  22. Loegering, D. J., and Schwacha, M. G. 1991. Macrophage hydrogen peroxide production and phagocytic function are decreased following phagocytosis mediated by Fc receptors but not complement receptors. Biochem Biophys Res Commun 180:26–272.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Marion E. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mosley, K., Cuzner, M.L. Receptor-mediated phagocytosis of myelin by macrophages and microglia: Effect of opsonization and receptor blocking agents. Neurochem Res 21, 481–487 (1996). https://doi.org/10.1007/BF02527713

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02527713

Key Words

Navigation