Skip to main content
Log in

MRS study of glutamate metabolism in cultured neurons/glia

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

[U-13C]Glutamate metabolism was studied in primary brain cell cultures. Cell extracts as well as redissolved lyophilized media were subjected to nuclear magnetic resonance spectroscopy in order to identify13C labeled metabolites. Both neurons and astrocytes metabolized glutamate extensively with13C label appearing in aspartate in all cultures. Additionally, GABA is synthesized in the GABAergic cortical neurons. Labeling of lactate and glutamine was prominent in medium from astrocytes, but not detectable in cerebral cortical neurons. Cerebellar granule neurons showed some labeling of lactate. Glutamate derived from the first turn of the tricarboxylic acid cycle (1,2,3-13C3-isotopomer) is present in all cell types analyzed. However, glutamate derived from the second turn of the cycle was only detected in granule neurons. In astrocytes, the transaminase inhibitor aminooxyacetic acid not only abolished the appearance of aspartate, but also of the 1,2,3-13C3-isotopomer of glutamate, thus showing that transmination is necessary for the conversion of 2-oxoglutarate to glutamate. The entry of glutamate into the tricarboxylic acid cycle was, however, not seriously impaired. 3-nitropropionic acid abolished the appearance of aspartate, the 1,2,3-13C3-isotopomer of glutamate and lactate in cerebellar granule neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bachelard, H. S., D. W. G. Cox, J. Feeney, and P. G. Morris. 1985.31P nuclear magnetic resonance studies on superfused cerebral tissue. Biochem. Soc. Trans. 13:835–839.

    PubMed  CAS  Google Scholar 

  2. Garofalo, O., D. W. Cox, and H. S. Bachelard. 1988. Brain levels of NADH and NAD+ under hypoxic and hypoglycaemic conditions in vitro. J. Neurochem. 51:172–176.

    Article  PubMed  CAS  Google Scholar 

  3. Cox, D. W. G., P. G. Morris, and H. S. Bachelard. 1988. Kinetic analysis of the cerebral creatine kinase reaction under hypoxic and hypoglycaemic conditions in vitro. A31P-n.m.r. study. Biochem. J. 255:523–527.

    PubMed  CAS  Google Scholar 

  4. Bachelard, H. S., K. J. Brooks, and O. Garofalo. 1991. Studies on the compartmentation of DOG metabolism in the brain. Neurochem. Res. 16:1025–1030.

    Article  PubMed  CAS  Google Scholar 

  5. Badar-Goffer, R. S., H.S. Bachelard, and P. G. Morris. 1990. Cerebral metabolism of acetate and glucose studied by13C-n.m.r. spectroscopy. Biochem. J. 266:133–139.

    PubMed  CAS  Google Scholar 

  6. Badar-Goffer, R. S., O. Ben-Yoseph, H. S. Bachelard, and P. G. Morris. 1992. Neuronal-glial metabolism under depolarizing conditions: A13C-n.m.r. study. Biochem. J. 282:225–230.

    PubMed  CAS  Google Scholar 

  7. Badar-Goffer, R. S., N. M. Thatcher, P. G. Morris, and H. S. Bachelard. 1993. Neither moderate hypoxia nor mild hypoglycaemia alone causes any significant increase in cerebral [Ca2+]: only a combination of the two insults has this effect, A31P and19F NMR study, J. Neurochem. 61:2207–2214.

    Article  PubMed  CAS  Google Scholar 

  8. Schousboe, A., E. Meier, J. Drejer, and L. Hertz. 1989. Preparation of primary cultures of mouse (rat) cerebellar granule cells. In A Dissection and Tissue Culture Manual for The Central Nervous System, A. Shahar, J. de-Vellis, A. Vernadakis, and B. Haber, editors. Alan R. Liss, New York. 203–206.

    Google Scholar 

  9. Hertz, E., A. C. H. Yu, L. Hertz, B. H. J. Juurlink, and A. Schousboe. 1989. Preparation of primary cultures of mouse cortical neurons. In A Dissection and Tissue Culture Manual for the Central Nervous System. A. Shahar, J. de-Vellis, A. Vernadakis, and B. Haber, editors. Alan R. Liss, New York, 183–186.

    Google Scholar 

  10. Hertz, L., B. H. J. Juurlink, E. Hertz, H. Fosmark, and A. Schousboe. 1989. Preparation of primary cultures of mouse (rat) astrocytes. In A Dissection and Tissue Culture Manual for The Central Nervous System. A. Shahar, J. De Vellis, A. Vernadakis, and B. Haber, editors. Alan R. Liss, New York. 105–108.

    Google Scholar 

  11. Lowry, O. H., N. J. Rosenbrough, A. L. Farr, and R. J. Randall, 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  CAS  Google Scholar 

  12. Sonnewald, U., N. Westergaard, S. B. Petersen, G. Unsgård, and A. Schousboe. 1993. Metabolism of [U-13C]glutamate in astrocytes studied by 13C NMR spectroscopy: Incorporation of more label into lactate than into glutamine demonstrates the importance of the TCA cycle. J. Neurochem. 61:1179–1182.

    Article  PubMed  CAS  Google Scholar 

  13. Sonnewald, U., N. Westergaard, J. Drejer, and A. Schousboe. 1996. Evaluation of the importance of transamination versus deamination in astrocytic metabolism of [U-13C]glutamate: implications for neurodegenerative diseases. Glia in press.

  14. Wullner, U., A. B. Young, J. B. Penney, and M. F. Beal. 1994. 3-Nitropropionic acid toxicity in the striatum. J. Neurochem. 63: 1772–1781.

    Article  PubMed  CAS  Google Scholar 

  15. Brouillet, E., and M. F. Beal. 1993. NMDA antagonists partially protect against MPTP induced neurotoxicity in mice. Neuroreport. 4:387–390.

    Article  PubMed  CAS  Google Scholar 

  16. Brouillet, E., B. G. Jenkins, B. T. Hyman, R. J. Ferrante, N. W. Kowall, R. Srivastava, D. S. Roy, B. R. Rosen, and M. F. Beal. 1993. Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. J. Neurochem. 60:356–359.

    Article  PubMed  CAS  Google Scholar 

  17. Siesjö, B. K. and F. Bengtsson. 1989. Calcium fluxes, calcium anatagnoists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J. Cereb. Blood Flow and Metab. 9:127–140.

    Google Scholar 

  18. Beal, M. F., B. T. Hyman, and W. Koroshetz. 1993. Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? Trends. Neurosci. 16:125–131.

    Article  PubMed  CAS  Google Scholar 

  19. Urbanska, E., C. Ikonomidou, M. Sieklucka, and W. A. Turski. 1991. Aminooxyacetic acid produces excitotoxic lesions in rat striatum. Synapse 9:129–135.

    Article  PubMed  CAS  Google Scholar 

  20. Beal, M. F., K. J. Swartz, B. T. Hyman, E. Storey, S. F. Finn, and W. Koroshetz. 1991. Aminooxyacetic acid results in excitotoxin lesions by a novel indirect mechanism. J. Neurochem. 57:1068–1073.

    Article  PubMed  CAS  Google Scholar 

  21. Hertz, L., P. H. Wu, and A. Schousboe. 1978. Evidence for net uptake of GABA into mouse astrocytes in primary cultures—its sodium dependence and potassium independence. Neurochem. Res 3:313–323.

    Article  PubMed  CAS  Google Scholar 

  22. Schousboe, A., G. Svenneby, and L. Hertz. 1977. Uptake and metabolism of glutamate in astrocytes cultured from dissociated mouse brain hemispheres. J. Neurochem. 29:999–1005.

    Article  PubMed  CAS  Google Scholar 

  23. Hertz, L. 1979. Functional interactions between neurons and astrocytes. I. Turnover and metabolism of putative amino acid transmitters. Prog. Neurobiol. 13:277–323.

    Article  PubMed  CAS  Google Scholar 

  24. Shank, R. P. and M. H. Aprison. 1977. Glutamine uptake and metabolism by the isolated toad brain: evidence pertaining to its proposed role as a transmitter precursor. J. Neurochem. 28:1189–1196.

    PubMed  CAS  Google Scholar 

  25. Farinelli, S. E. and W. J. Nicklas. 1992. Glutamate metabolism in rat cortical astrocyte cultures. J. Neurochem. 58:1905–1915.

    Article  PubMed  CAS  Google Scholar 

  26. Waniewski, R. A. and D. L. Martin. 1986. Exogenous glutamate is metabolized to glutamine and exported by rat primary astrocyte cultures. J. Neurochem. 47:304–313.

    Article  PubMed  CAS  Google Scholar 

  27. Yu, A. C., T. E. Fisher, E. Hertz, J. T., Tildon, A. Schousboe, and L. Hertz. 1984. Metabolic fate of [14C]-glutamine in mouse cerebral neurons in primary cultures, J. Neurosci. Res. 11:351–357.

    Article  PubMed  CAS  Google Scholar 

  28. Yudkoff, M., I. Nissim, K. Hummeler, M. Medow, and D. Pleasure. 1986. Utilization of [15N]glutamate by cultured astrocytes. Biochem. J. 234:185–192.

    PubMed  CAS  Google Scholar 

  29. Zielke, H. R., J. T. Tildon, M. E. Landry, and S. R. Max. 1990. Effect of 8-bromo-cAMP and dexamethasone on glutamate metabolism in rat astrocytes. Neurochem. Res. 15:1115–1122.

    Article  PubMed  CAS  Google Scholar 

  30. McKenna, M. C., U. Sonnewald, X. Huang, J. Stevenson, and R. H. Zielke. 1996. Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes. J. Neurochem. 66:386–393.

    Article  PubMed  CAS  Google Scholar 

  31. Cooper, A. J., and F. Plum. 1987. Biochemistry and physiology of brain ammonia. Physiol. Rev. 67:440–519.

    PubMed  CAS  Google Scholar 

  32. Plaitakis, A. and S. Berl. 1988. Pathology of glutamate dehydrogenase. In Glutamine and glutamate in mammals. E. Kvamme, editor. CRC Press, Boca Raton, FI. 128–140.

    Google Scholar 

  33. Erecinska, M. and D. Nelson. 1994. Effects of 3-nitropropionic acid on synaptosomal energy and transmitter metabolism: relevance to neurodegenerative brain diseases. J. Neurochem. 63:1033–1041.

    Article  PubMed  CAS  Google Scholar 

  34. Hassel, B. and U. Sonnewald. 1995. Selective inhibition of the TCA cycle of GABAergic neurons with 3-nitropropionic acid in vivo. J. Neurochem. in press:

  35. Leo, G. C., B. F. Driscoll, R. P. Shank, and E. Kaufman. 1993. Analysis of [1-13C]D-glucose metabolism in cultured astrocytes and neurons using nuclear magentic resonance spectroscopy. Dev. Neurosci. 15:282–288.

    PubMed  CAS  Google Scholar 

  36. Sonnewald, U., N. Westergaard, B. Hassel, T. B. Müller, G. Unsgård, F. Fonnum, L. Hertz, A. Schousboe, and S. B. Petersen. 1993. NMR spectroscopic studies of13C acetate and13C glucose metabolism in neocortical astrocytes: Evidence for mitochondrial heterogeneity. Dev. Neurosci. 15:351–358.

    PubMed  CAS  Google Scholar 

  37. Hassel, B., U. Sonnewald, G. Unsgard, and F. Fonnum. 1994. NMR spectroscopy of cultured astrocytes: effects of glutamine and the gliotoxin fluorocitrate. J. Neurochem. 62:2187–2194.

    Article  PubMed  CAS  Google Scholar 

  38. Hassel, B. and U. Sonnewald. 1995. Glial formation of pyruvate and lactate from TCA cycle intermediates. J. Neurochem. in press:

  39. Sonnewald, U., T. B. Müller, N. Westergaard, J. S. Svendsen, G. Unsgård, and A. Schousboe. 1994. Neuronal-glial interactions in glutamate and GABA homeostasis: Effects of hypoxia. In Pharmacology of Cerebral Ischemia. J. Krieglstein and H. Oberpichler-Schwenk, editors. Wissenschaftliche Verlagsgesellschaft, Stuttgart. 171–190.

    Google Scholar 

  40. Westergaard, N., U. Sonnewald, S. B. Petersen, and A. Schousboe. 1995. Glutamate and glutamine metabolism in cultured GA-BAergic neurons studied by13C NMR spectroscopy may indicate compartmentation and mitochondrial heterogenity. Neurosci. Lett. 185:24–28.

    Article  PubMed  CAS  Google Scholar 

  41. McKenna, M. C., N. Tonder, J. H. Stevenson, X. Huang, and R. Zielke. 1995. Synaptic terminals have higher mitochondrial malic enzyme activity than cortical or cerebellar neurons. J. Neurochem. 64:S90B Abstract.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Herman Bachelard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sonnewald, U., White, L.R., Ødegård, E. et al. MRS study of glutamate metabolism in cultured neurons/glia. Neurochem Res 21, 987–993 (1996). https://doi.org/10.1007/BF02532408

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02532408

Key Words

Navigation