Skip to main content
Log in

NeuroAIDS

Characteristics and Diagnosis of the Neurological Complications of AIDS

  • Neurological Disorders
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

The neurological complications of AIDS (NeuroAIDS) include neurocognitive impairment and HIV-associated dementia (HAD; also known as AIDS dementia and HIV encephalopathy). HAD is the most significant and devastating central nervous system (CNS) complications associated with HIV infection. Despite recent advances in our knowledge of the clinical features, pathogenesis, and neurobiological aspects of HAD, it remains a formidable scientific and therapeutic challenge. An understanding of the mechanisms of HIV neuroinvasion, CNS proliferation, and HAD pathogenesis provide a basis for the interpretation of the diagnostic features of HAD and its milder form, HIV-associated minor cognitive/motor disorder (MCMD). Current diagnostic strategies are associated with significant limitations, but it is hoped that the use of biomarkers may assist researchers and clinicians in predicting the onset of the disease process and in evaluating the effects of new therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Fig. 1
Fig. 2
Table II

Similar content being viewed by others

Notes

  1. The ‘snout reflex’ is a primitive reflex exhibited in normal infants but not in neurologically intact adults; it involves the involuntary puckering of the lips when the nasal philtrum (upper lip) is gently tapped. After frontal lobe injury the snout reflex is ‘released’ from its normal inhibition as a ‘frontal release sign’.

References

  1. Navia BA, Jordan BD, Price RW. The AIDS dementia complex: I. Clinical features. Ann Neurol 1986; 19: 517–24

    Article  PubMed  CAS  Google Scholar 

  2. Hinkin CH, Hardy DJ, Mason KI, et al. Medication adherence in HIV-infected adults: effect of patient age, cognitive status, and substance abuse. AIDS 2004; 18(1 Suppl.): 19S–25S

    Google Scholar 

  3. Ellis RJ, Deutsch R, Heaton RK, et al. Neurocognitive impairment is an independent risk factor for death in HIV infection. San Diego HIV Neurobehavioral Research Center Group. Arch Neurol 1997; 54: 416–24

    Article  PubMed  CAS  Google Scholar 

  4. Sacktor N. The epidemiology of human immunodeficiency virus-associated neurological disease in the era of highly active antiretroviral therapy. J Neurovirol 2002; 8(2 Suppl.): 115S–21S

    Article  CAS  Google Scholar 

  5. Tozzi V, Balestra P, Bellagamba R, et al. Persistence of neuropsychologic deficits despite long-term highly active antiretroviral therapy in patients with HIV-related neurocognitive impairment: prevalence and risk factors. J Acquir Immune Defic Syndr 2007; 45: 174–82

    Article  PubMed  Google Scholar 

  6. Nath A, Sacktor N. Influence of highly active antiretroviral therapy on persistence of HIV in the central nervous system. Curr Opin Neurol 2006; 19: 358–61

    Article  PubMed  Google Scholar 

  7. McGee B, Smith N, Aweeka F. HIV pharmacology: barriers to the eradication of HIV from the CNS. HIV Clin Trials 2006; 7: 142–53

    Article  PubMed  Google Scholar 

  8. Lambotte O, Deiva K, Tardieu M. HIV-1 persistence, viral reservoir, and the central nervous system in the HAART era. Brain Pathol 2003; 13: 95–103

    Article  PubMed  Google Scholar 

  9. Price R, Sidtis J. Early HIV infection and the AIDS dementia complex. Neurology 1990; 40: 323–6

    Article  PubMed  Google Scholar 

  10. Tambussi G, Gori A, Capiluppi B, et al. Neurological symptoms during primary human immunodeficiency virus (HIV) infection correlate with high levels of HIV RNA in cerebrospinal fluid. Clin Infect Dis 2000; 30: 962–5

    Article  PubMed  CAS  Google Scholar 

  11. Chang L, Lee PL, Yiannoutsos CT, et al. HIV MRS Consortium. A multicenter in vivo proton-MRS study of HIV-associated dementia and its relationship to age. Neuroimage 2004; 23: 1336–47

    Article  PubMed  CAS  Google Scholar 

  12. Dore GJ, Correll PK, Li Y, et al. Changes to AIDS dementia complex in the era of highly active antiretroviral therapy. AIDS 1999; 13: 1249–53

    Article  PubMed  CAS  Google Scholar 

  13. Marshall DW, Brey RL, Cahill WT, et al. Spectrum of cerebrospinal fluid findings in various stages of human immunodeficiency virus infection. Arch Neurol 1988; 45: 954–8

    Article  PubMed  CAS  Google Scholar 

  14. Valcour V, Shikuma C, Shiramizu B, et al. Higher frequency of dementia in older HIV-1 individuals: the Hawaii Aging with HIV-1 Cohort. Neurology 2004; 63: 822–7

    Article  PubMed  CAS  Google Scholar 

  15. King JE, Eugenin EA, Buckner CM, et al. HIV tat and neurotoxicity. Microbes Infect 2006; 8: 1347–57

    Article  PubMed  CAS  Google Scholar 

  16. Singer EJ, Syndulko K, Fahy-Chandon B, et al. Intrathecal IgG synthesis and albumin leakage are increased in subjects with HIV-1 neurologic disease. J Acquir Immune Defic Syndr 1994; 7: 265–71

    PubMed  CAS  Google Scholar 

  17. Singer EJ, Syndulko K, Fahy-Chandon BN, et al. Cerebrospinal fluid p24 antigen levels and intrathecal immunoglobulin G synthesis are associated with cognitive disease severity in HIV-1. AIDS 1994, 204

  18. Resnick L, Berger JR, Shapshak P, et al. Early penetration of the blood-brain-barrier by HIV. Neurology 1988; 38:: 9–14

    Article  PubMed  CAS  Google Scholar 

  19. Tourtellotte WW, Singer E, Syndulko K, et al. Intra-blood-brain-barrier IgG synthesis in HIV. In: Palfreyman MG, McCann PP, Lovenberg W, et al., editors. Enzymes as targets for drug design. San Diego (CA): Academic Press, 1990: 211–7

    Google Scholar 

  20. Böttiger D, Keys B, Putkonen P, et al. Simian immunodeficiency virus (SIVsm) isolation from blood and brain of experimentally infected macaques. Aids, 1991; 5(4): 445–9

    Article  PubMed  Google Scholar 

  21. Smith MO, Heyes MP, Lackner AA. Early intrathecal events in rhesus macaques (Macaca mulatta) infected with pathogenic or nonpathogenic molecular clones of simian immunodeficiency virus. Lab Invest 1995; 72: 547–58

    PubMed  CAS  Google Scholar 

  22. Denning DW. The neurological features of acute HIV infection. Biomed Pharmacother 1988; 42: 11–4

    PubMed  CAS  Google Scholar 

  23. Jones Jr HR, Ho DD, Forqacs P, et al. Acute fulminating fatal leukoencephalopathy as the only manifestation of human immunodeficiency virus infection. Ann Neurol 1988; 23: 519–22

    Article  PubMed  Google Scholar 

  24. Price RW, Brew BJ. The AIDS dementia complex. J Infect Dis 1988; 158(5): 1079–83

    Article  PubMed  CAS  Google Scholar 

  25. Ellen SR, Judd FK, Mijch AM, et al. Secondary mania in patients with HIV infection. Aust N Z J Psychiatry 1999; 33: 353–60

    Article  PubMed  CAS  Google Scholar 

  26. Scharko AM, Baker EH, Kothari P, et al. Case study: delirium in an adolescent girl with human immunodeficiency virus-associated dementia. J Am Acad Child Adolesc Psychiatry 2006 Jan; 45(1): 104–8

    Article  PubMed  Google Scholar 

  27. Report of a Working Group of the American Academy of Neurology AIDS Task Force. Nomenclature and research case definitions for neurologic manifestations of human immunodeficiency virus-type 1 (HIV-1) infection. Neurology 1991; 41: 778–85

    Article  Google Scholar 

  28. Antinori A, Arendt G, Becker JT, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology 2007; 69: 1789–99

    Article  PubMed  CAS  Google Scholar 

  29. Cherner M, Cysique L, Heaton RK, et al. Neuropathologic confirmation of definitional criteria for human immunodeficiency virus-associated neurocognitive disorders. J Neurovirol 2007; 13: 23–8

    Article  PubMed  Google Scholar 

  30. Sweeney JA, Brew BJ, Keilp JG, et al. Pursuit eye movement dysfunction in HIV-1 seropositive individuals. J Psychiatry Neurosci 1991; 16: 247–52

    PubMed  CAS  Google Scholar 

  31. The Dana Consortium on Therapy for HIV Dementia and Related Cognitive Disorders. Clinical confirmation of the American Academy of Neurology algorithm for HIV-1-associated cognitive/motor disorder. Neurology 1996; 47: 1247–53

    Article  Google Scholar 

  32. Cardoso F. HIV-related movement disorders: epidemiology, pathogenesis and management. CNS Drugs 2002; 16: 663–8

    Article  PubMed  Google Scholar 

  33. Power C, Seines OA, Grim JA, et al. HIV Dementia Scale: a rapid screening test. J Acquir Immune Defic Syndr Hum Retrovirol 1995; 8(3): 273–8

    Article  PubMed  CAS  Google Scholar 

  34. van Harten B, Courant MN, Scheltens P, et al. Validation of the HIV dementia scale in an elderly cohort of patients with subcortical cognitive impairment caused by subcortical ischaemic vascular disease or a normal pressure hydrocephalus. Dement Geriatr Cogn Disord 2004; 18: 109–14

    Article  PubMed  Google Scholar 

  35. Richardson MA, Morgan EE, Vielhauer MJ, et al. Utility of the HIV dementia scale in assessing risk for significant HIV-related cognitive-motor deficits in a high-risk urban adult sample. AIDS Care 2005; 17: 1013–21

    Article  PubMed  CAS  Google Scholar 

  36. Robertson KR, Parsons TD, Sidtis JJ, et al. Timed gait test: normative data for the assessment of the AIDS dementia complex. J Clin Exp Neuropsychol 2006; 28: 1053–64

    Article  PubMed  Google Scholar 

  37. Marder K, Liu X, Stern Y, et al. Neurologic signs and symptoms in a cohort of homosexual men followed for 4.5 years. Neurology 1995; 45: 261–7

    Article  PubMed  CAS  Google Scholar 

  38. Dallasta LM, Pisarov LA, Esplen JE, et al. Blood-brain barrier tight junction disruption in human immunodeficiency virus-1 encephalitis. Am J Pathol 1999; 155: 1915–27

    Article  PubMed  CAS  Google Scholar 

  39. Tremont-Lukats IW, Serbanescu R, Teixeira GM, et al. Multivariate analysis of primitive reflexes in patients with human immunodeficiency virus type-1 infection and neurocognitive dysfunction. Ital J Neurol Sci 1999; 20: 17–22

    Article  PubMed  CAS  Google Scholar 

  40. Marder K, Liu X, Stern Y, et al. Risk of human immunodeficiency virus type 1-related neurologic disease in a cohort of intravenous drug users. Arch Neurol 1995; 52: 1174–82

    Article  PubMed  CAS  Google Scholar 

  41. Marcario JK, Raymond LA, McKiernan BJ, et al. Motor skill impairment in SIV-infected rhesus macaques with rapidly and slowly progressing disease. J Med Primatol 1999; 28: 105–17

    Article  PubMed  CAS  Google Scholar 

  42. Cloak CC, Chang L, Ernst T. Increased frontal white matter diffusion is associated with glial metabolites and psychomotor slowing in HIV. J Neuroimmunol 2004; 157: 147–52

    Article  PubMed  CAS  Google Scholar 

  43. Maruff P, Currie J, Malone V, et al. Neuropsychological characterization of the AIDS dementia complex and rationalization of a test battery. Arch Neurol 1994; 51: 689–95

    Article  PubMed  CAS  Google Scholar 

  44. Amador F, Mayor-Rios J, del Castillo-Martin N. Cognitive slowing in asymptomatic individuals who are seropositive for human immunodeficiency virus type 1. Rev Neurol 2006; 42: 132–6

    PubMed  CAS  Google Scholar 

  45. Shiramizu B, Paul R, Williams A, et al. HIV proviral DNA associated with decreased neuropsychological function. J Neuropsychiatry Clin Neurosci 2007; 19: 157–63

    Article  PubMed  Google Scholar 

  46. Tucker KA, Robertson KR, Lin W, et al. Neuroimaging in human immunodeficiency virus infection. J Neuroimmunol 2004; 157: 153–62

    Article  PubMed  CAS  Google Scholar 

  47. Aylward EH, Henderer JD, McArthur JC, et al. Reduced basal ganglia volume in HIV-1-associated dementia: results from quantitative neuroimaging. Neurology 1993; 43: 2099–104

    Article  PubMed  CAS  Google Scholar 

  48. Suwanwelaa N, Phanuphak P, Phanthumchinda K, et al. Magnetic resonance spectroscopy of the brain in neurologically asymptomatic HIV-infected patients. Magn Reson Imaging 2000; 18: 859–65

    Article  PubMed  CAS  Google Scholar 

  49. Filippi CG, Ulug AM, Ryan E, et al. Diffusion tensor imaging of patients with HIV and normal-appearing white matter on MR images of the brain. Am J Neuroradiol 2001; 22: 277–83

    PubMed  CAS  Google Scholar 

  50. Ances BM, Roc AC, Wang J, et al. Caudate blood flow and volume are reduced in HIV+ neurocognitively impaired patients. Neurology 2006; 66: 862–6

    Article  PubMed  CAS  Google Scholar 

  51. Rottenberg DA, Sidtis JJ, Strother SC, et al. Abnormal cerebral glucose metabolism in HIV-1 seropositive subjects with and without dementia. J Nucl Med 1996; 37: 1133–41

    PubMed  CAS  Google Scholar 

  52. Brunetti A, Berg G, Di Chiro G, et al. Reversal of brain metabolic abnormalities following treatment of AIDS dementia complex with 3′-azido-2′,3′-dideoxythymidine (AZT, zidovudine): a PET-FDG study. J Nucl Med 1989; 30: 581–90

    PubMed  CAS  Google Scholar 

  53. Krebs FC, Ross H, McAllister J, et al. HIV-1-associated central nervous system dysfunction. Adv Pharmacol 2000; 49: 315–85

    Article  PubMed  CAS  Google Scholar 

  54. Marshall DW. HIV penetration of the BBB. Neurology 1988; 38: 1000–1

    Article  PubMed  CAS  Google Scholar 

  55. Kim WK, Corey S, Alvarez X, et al. Monocyte/macrophage traffic in HIV and SIV encephalitis. J Leukoc Biol 2003; 74: 650–6

    Article  PubMed  CAS  Google Scholar 

  56. Stevceva L, Yoon V, Anastasiades D, et al. Immune responses to HIV Gp120 that facilitate viral escape. Curr HIV Res 2007; 5: 47–54

    Article  PubMed  CAS  Google Scholar 

  57. Moore JP, Kitchen SG, Pugach P, et al. The CCR5 and CXCR4 coreceptors: central to understanding the transmission and pathogenesis of human immunodeficiency virus type 1 infection. AIDS Res Hum Retroviruses 2004; 20: 111–26

    Article  PubMed  CAS  Google Scholar 

  58. Cardozo T, Kimura T, Philpott S, et al. Structural basis for coreceptor selectivity by the HIV type 1 V3 loop. AIDS Res Hum Retroviruses 2007; 23: 415–26

    Article  PubMed  CAS  Google Scholar 

  59. Bomsel M. Trans-cytosis of infectious human immunodeficiency virus across a tight human epithelial cell line barrier. Nat Med 1997; 3: 42–7

    Article  PubMed  CAS  Google Scholar 

  60. Banks WA, Freed EO, Wolf KM, et al. Transport of human immunodeficiency virus type 1 pseudoviruses across the blood-brain barrier: role of envelope proteins and adsorptive endocytosis. J Virol 2001; 75: 4681–91

    Article  PubMed  CAS  Google Scholar 

  61. Liu NQ, Lossinsky AS, Popik W, et al. Human immunodeficiency virus type 1 enters brain microvascular endothelia by macropinocytosis dependent on lipid rafts and the mitogen-activated protein kinase signaling pathway. J Virol 2002; 76: 6689–700

    Article  PubMed  CAS  Google Scholar 

  62. Toborek M, Lee YW, Flora G, et al. A mechanisms of the blood-brain barrier disruption in HIV-1 infection. Cell Mol Neurobiol 2005 Feb; 25(1): 181–99

    Article  PubMed  Google Scholar 

  63. Avison MJ, Nath A, Greene-Avison R, et al. Neuroimaging correlates of HIV-associated BBB compromise. J Neuroimmunol 2004; 157: 140–6

    Article  PubMed  CAS  Google Scholar 

  64. Ricardo-Dukelow M, Kadiu I, Rozek W, et al. HIV-1 infected monocyte-derived macrophages affect the human brain microvascular endothelial cell proteome: new insights into blood-brain barrier dysfunction for HIV-1-associated dementia. J Neuroimmunol 2007; 185: 37–46

    Article  PubMed  CAS  Google Scholar 

  65. Kramer-Hammerle S, Rothenaigner I, Wolff H, et al. Cells of the central nervous system as targets and reservoirs of the human immunodeficiency virus. Virus Res 2005; 111: 194–213

    Article  PubMed  CAS  Google Scholar 

  66. Gendelman HE, Lipton SA, Tardieu M, et al. The neuropathogenesis of HIV-1 infection. J Leukoc Biol 1994; 56: 389–98

    PubMed  CAS  Google Scholar 

  67. Wiley CA, Schrier RD, Nelson JA, et al. Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proc Natl Acad Sci U S A 1986; 83: 7089–93

    Article  PubMed  CAS  Google Scholar 

  68. Pumarola-Sune T, Navia BA, Cordon-Cardo C, et al. HIV antigen in the brains of patients with the AIDS dementia complex. Ann Neurol 1987; 21: 490–6

    Article  PubMed  CAS  Google Scholar 

  69. Bissel SJ, Wang G, Trichel AM, et al. Longitudinal analysis of activation markers on monocyte subsets during the development of simian immunodeficiency virus encephalitis. J Neuroimmunol 2006; 177(1–2): 85–98

    Article  PubMed  CAS  Google Scholar 

  70. Lawrence DM, Durham LC, Schwartz L, et al. Human immunodeficiency virus type 1 infection of human brain-derived progenitor cells. J Virol 2004 Jul; 78(14): 7319–28

    Article  PubMed  CAS  Google Scholar 

  71. Churchill MJ, Gorry PR, Cowley D, et al. Use of laser capture microdissection to detect integrated HIV-1 DNA in macrophages and astrocytes from autopsy brain tissues. J Neurovirol 2006 Apr; 12(2): 146–52

    Article  PubMed  CAS  Google Scholar 

  72. Tozzi V, Balestra P, Galgani S, et al. Changes in neurocognitive performance in a cohort of patients treated with HAART for 3 years. J Acquir Immune Defic Syndr 2001; 28: 19–27

    PubMed  CAS  Google Scholar 

  73. Mandraju RK, Kondapi AK. Regulation of topoisomerase II alpha and beta in HIV-1 infected and uninfected neuroblastoma and astrocytoma cells: involvement of distinct nordihydroguaretic acid sensitive inflammatory pathways. Arch Biochem Biophys 2007 May 1; 461(1): 40–9

    Article  PubMed  CAS  Google Scholar 

  74. Kaul M, Lipton SA. Mechanisms of neuronal injury and death in HIV associated dementia. Curr HIV Res 2006; 4: 307–18

    Article  PubMed  CAS  Google Scholar 

  75. Fischer-Smith T, Rappaport J. Evolving paradigms in the pathogenesis of HIV-1-associated dementia. Expert Rev Mol Med 2005; 7: 1–26

    Article  PubMed  Google Scholar 

  76. Gorry PR, Ong C, Thorpe J, et al. Astrocyte infection by HIV-1: mechanisms of restricted virus replication, and role in the pathogenesis of HIV-1-associated dementia. Curr HIV Res 2003; 1: 463–73

    Article  PubMed  CAS  Google Scholar 

  77. Brack-Werner R. Astrocytes: HIV cellular reservoirs and important participants in neuropathogenesis. AIDS 1999; 13: 1–22

    Article  PubMed  CAS  Google Scholar 

  78. Carroll-Anzinger D, Al-Harthi L. Gamma interferon primes productive human immunodeficiency virus infection in astrocytes. J Virol 2006; 80: 541–4

    Article  PubMed  CAS  Google Scholar 

  79. Jacotot E, Ravagnan L, Loeffler M, et al. The HIV-1 viral protein R induces apoptosis via a direct effect on the mitochondrial permeability transition pore. J Exp Med 2000; 191: 33–46

    Article  PubMed  CAS  Google Scholar 

  80. Valle LD, Croul S, Morgello S, et al. Detection of HIV-1 Tat and JCV capsid protein, VP1, in AIDS brain with progressive multifocal leukoencephalopathy. J Neurovirol 2000; 6: 221–8

    Article  PubMed  Google Scholar 

  81. Bagasra O, Lavi E, Bobroski L, et al. Cellular reservoirs of HIV-1 in the central nervous system of infected individuals: identification by the combination of in situ polymerase chain reaction and immunohistochemistry. AIDS 1996; 10: 573–85

    Article  PubMed  CAS  Google Scholar 

  82. Nath A. Pathobiology of human immunodeficiency virus dementia. Semin Neurol 1999; 19: 113–27

    Article  PubMed  CAS  Google Scholar 

  83. Nath A, Conant K, Chen P, et al. Transient exposure to HIV-1 Tat protein results in cytokine production in macrophages and astrocytes: a hit and run phenomenon. J Biol Chem 1999; 274: 17098–102

    Article  PubMed  CAS  Google Scholar 

  84. Fine SM, Angel RA, Perry SW, et al. Tumor necrosis factor alpha inhibits glutamate uptake by primary human astrocytes: implications for pathogenesis of HIV-1 dementia. J Biol Chem 1996; 271: 15303–6

    Article  PubMed  CAS  Google Scholar 

  85. Bhakar AL, Tannis LL, Zeindler C, et al. Constitutive nuclear factor-kappa B activity is required for central neuron survival. J Neurosci 2002; 22: 8466–75

    PubMed  CAS  Google Scholar 

  86. Sanchez AC, Davis RL, Syapin PJ. Identification of cis-regulatory regions necessary for robust Nos2 promoter activity in glial cells: indirect role for NF-kappaB. J Neurochem 2003; 86: 1379–90

    Article  PubMed  CAS  Google Scholar 

  87. Sui Z, Sniderhan LF, Fan S, et al. Human immunodeficiency virus-encoded Tat activates glycogen synthase kinase-3beta to antagonize nuclear factor-kappaB survival pathway in neurons. Eur J Neurosci 2006; 23: 2623–34

    Article  PubMed  Google Scholar 

  88. Meucci O, Fatatis A, Simen AA, et al. Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival [published erratum appears in Proc Natl Acad Sci U S A 2001 Dec 18; 98 (26): 15393]. Proc Natl Acad Sci U S A 2000 Jul 5; 97(14): 8075–80

    Article  PubMed  CAS  Google Scholar 

  89. Ramirez SH, Sanchez JF, Dimitri CA, et al. Neurotrophins prevent HIV Tat-induced neuronal apoptosis via a nuclear factor-kappaB (NF-kappaB)-dependent mechanism. J Neurochem 2001; 78: 874–89

    Article  PubMed  CAS  Google Scholar 

  90. Mattson MP, Haughey NJ, Nath A. Cell death in HIV dementia. Cell Death Differ 2005; 12(1 Suppl.): 893S–904S

    Article  CAS  Google Scholar 

  91. Haughey NJ, Mattson MP. Calcium dysregulation and neuronal apoptosis by the HIV-1 proteins Tat and gp120. J Acquir Immune Defic Syndr 2002; 31(2 Suppl.): 55S–61S

    Article  Google Scholar 

  92. Kanmogne GD, Schall K, Leubhart J, et al. HIV-1 gpl20 compromises blood-brain barrier integrity and enhance monocyte migration across blood-brain barrier: implication for viral neuropathogenesis. J Cereb Blood Flow Metab 2007; 27: 123–34

    Article  PubMed  CAS  Google Scholar 

  93. Takahashi K, Wesselingh SL, Griffin DE, et al. Localization of HIV-1 in human brain using polymerase chain reaction/in situ hybridization and immuno-cytochemistry. Ann Neurol 1996; 39: 705–11

    Article  PubMed  CAS  Google Scholar 

  94. Stewart SA, Poon B, Jowett JB, et al. Human immunodeficiency virus type 1 Vpr induces apoptosis following cell cycle arrest. J Virol 1997 Jul; 71(7): 5579–92

    PubMed  CAS  Google Scholar 

  95. Trillo-Pazos G, Diamanturos A, Rislove L, et al. Detection of HIV-1 DNA in microglia/macrophages, astrocytes and neurons isolated from brain tissue with HIV-1 encephalitis by laser capture microdissection. Brain Pathol 2003; 13: 144–54

    Article  PubMed  CAS  Google Scholar 

  96. Greene WC, Peterlin BM. Charting HIV’s remarkable voyage through the cell: basic science as a passport to future therapy. Nat Med 2002; 8: 673–80

    Article  PubMed  CAS  Google Scholar 

  97. Lehmann MH, Walter S, Ylisastigui L, et al. Extracellular HIV-1 Nef increases migration of monocytes. Exp Cell Res 2006; 312: 3659–68

    Article  PubMed  CAS  Google Scholar 

  98. Eugenin EA, Osiecki K, Lopez L, et al. CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood-brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS. J Neurosci 2006; 26: 1098–106

    Article  PubMed  CAS  Google Scholar 

  99. Levy DN, Refaeli Y, Weiner DB. The Vpr regulatory gene of HIV. Curr Top Microbiol Immunol 1995; 193: 209–36

    Article  PubMed  CAS  Google Scholar 

  100. Patel CA, Mukhtar M, Pomerantz RJ. Human immunodeficiency virus type 1 Vpr induces apoptosis in human neuronal cells. J Virol 2000; 74: 9717–26

    Article  PubMed  CAS  Google Scholar 

  101. Stewart SA, Poon B, Song JY, et al. Human immunodeficiency virus type 1 Vpr induces apoptosis through caspase activation. J Virol 2000 Apr; 74(7): 3105–11

    Article  PubMed  CAS  Google Scholar 

  102. Yedavalli VS, Shih HM, Chiang YP, et al. Human immunodeficiency virus type 1 Vpr interacts with antiapoptotic mitochondrial protein HAX-1. J Virol 2005; 79: 13735–46

    Article  PubMed  CAS  Google Scholar 

  103. Wheeler ED, Achim CL, Ayyavoo V. Immunodetection of human immunodeficiency virus type 1 (HIV-1) Vpr in brain tissue of HIV-1 encephalitic patients. J Neurovirol 2006; 12: 200–10

    Article  PubMed  CAS  Google Scholar 

  104. Norman JP, Perry SW, Kasischke KA, et al. HIV-1 trans activator of transcription protein elicits mitochondrial hyperpolarization and respiratory deficit, with dysregulation of complex IV and nicotinamide adenine dinucleotide homeostasis in cortical neurons. J Immunol 2007; 178: 869–76

    PubMed  CAS  Google Scholar 

  105. Anderson E, Zink W, Xiong H, et al. HIV-1-associated dementia: a metabolic encephalopathy perpetrated by virus-infected and immune-competent mononuclear phagocytes. J Acquir Immune Defic Syndr 2002; 31Suppl. 2: S43–54

    Article  PubMed  CAS  Google Scholar 

  106. Kaul M, Garden GA, Lipton SA. Pathways to neuronal injury and apoptosis ain HIV-associated dementia. Nature 2001; 410: 988–94

    Article  PubMed  CAS  Google Scholar 

  107. Sui Z, Sniderhan LF, Schifitto G, et al. Functional synergy between CD40 ligand and HIV-1 Tat contributes to inflammation: implications in HIV type 1 dementia. J Immunol 2007; 178: 3226–36

    PubMed  CAS  Google Scholar 

  108. Zhang K, McQuibban GA, Silva C, et al. HIV-induced metalloproteinase processing of the chemokine stromal cell derived factor-1 causes neurodegeneration. Nat Neurosci 2003; 6: 1064–71

    Article  PubMed  CAS  Google Scholar 

  109. Yi Y, Lee C, Liu QH, et al. Chemokine receptor utilization and macrophage signaling by human immunodeficiency virus type 1 gp120: implications for neuropathogenesis. J Neurovirol 2004; 10(1 Suppl.): 91S–6S

    Google Scholar 

  110. Brabers NA, Nottet HS. Role of the pro-inflammatory cytokines TNF-alpha and IL-1beta in HIV-associated dementia. Eur J Clin Invest 2006; 36: 447–58

    Article  PubMed  CAS  Google Scholar 

  111. Shapshak P, Duncan R, Minagar A, et al. Elevated expression of IFN-gamma in the HIV-1 infected brain. Front Biosci 2004 May 1; 9: 1073–81

    Article  PubMed  CAS  Google Scholar 

  112. Giunta B, Obregon D, Hou H, et al. EGCG mitigates neurotoxicity mediated by HIV-1 proteins gp120 and Tat in the presence of IFN-gamma: role of JAK/ STAT1 signaling and implications for HIV-associated dementia. Brain Res 2006; 1123: 216–25

    Article  PubMed  CAS  Google Scholar 

  113. Opii WO, Sultana R, Abdul HM, et al. Oxidative stress and toxicity induced by the nucleoside reverse transcriptase inhibitor (NRTI) -2′,3′-dideoxycytidine (ddC): relevance to HIV-dementia. Exp Neurol 2007; 204: 29–38

    Article  PubMed  CAS  Google Scholar 

  114. Sevigny JJ, Albert SM, McDermott MP, et al. Evaluation of HIV RNA and markers of immune activation as predictors of HIV-associated dementia. Neurology 2004; 63: 2084–90

    Article  PubMed  CAS  Google Scholar 

  115. Demuth M, Czub S, Sauer U, et al. Relationship between viral load in blood, cerebrospinal fluid, brain tissue and isolated microglia with neurological disease in macaques infected with different strains of SIV. J Neurovirol 2000; 6: 187–201

    Article  PubMed  CAS  Google Scholar 

  116. An SF, Groves M, Giometto B, et al. Detection and localisation of HIV-1 DNA and RNA in fixed adult AIDS brain by polymerase chain reaction/in situ hybridisation technique. Acta Neuropathol (Berl) 1999 Nov; 98(5): 481–7

    Article  CAS  Google Scholar 

  117. Glass JD, Wesselingh SL, Seines OA, et al. Clinical-neuropathologic correlation in HIV-associated dementia. Neurology 1993; 43: 2230–7

    Article  PubMed  CAS  Google Scholar 

  118. Pulliam L, Sun B, Rempel H. Invasive chronic inflammatory monocyte phenotype in subjects with high HIV-1 viral load. J Neuroimmunol 2004; 157: 93–8

    Article  PubMed  CAS  Google Scholar 

  119. Fischer-Smith T, Croul S, Sverstiuk AE, et al. CNS invasion by CD14+/CD16+ peripheral blood-derived monocytes in HIV dementia: perivascular accumulation and reservoir of HIV infection. J Neurovirol 2001; 7: 528–41

    Article  PubMed  CAS  Google Scholar 

  120. McCrossan M, Marsden M, Carnie FW, et al. An immune control model for viral replication in the CNS during presymptomatic HIV infection. Brain 2006; 129: 503–16

    Article  PubMed  CAS  Google Scholar 

  121. Wojna V, Carlson KA, Luo X, et al. Proteomic fingerprinting of human immunodeficiency virus type 1-associated dementia from patient monocyte-derived macrophages: A case study. J Neurovirol 2004; 10(1 Suppl.): 74–81

    PubMed  CAS  Google Scholar 

  122. Marshall DW, Brey RL, Butzin CA, et al. CSF changes in a longitudinal study of 124 neurologically normal HIV-1-infected U.S. Air Force personnel. J Acquir Immune Defic Syndr 1991; 4: 777–81

    PubMed  CAS  Google Scholar 

  123. Weber T. Cerebrospinal fluid analysis for the diagnosis of human immunodeficiency virus-related neurologic diseases. Semin Neurol 1999; 19: 223–33

    Article  PubMed  CAS  Google Scholar 

  124. McArthur JC, McClernon DR, Cronin MF, et al. Relationship between human immunodeficiency virus-associated dementia and viral load in cerebrospinal fluid and brain. Ann Neurol 1997; 42: 689–98

    Article  PubMed  CAS  Google Scholar 

  125. Berger JR, Nath A, Greenberg RN, et al. Cerebrovascular changes in the basal ganglia with HIV dementia. Neurology 2000; 54: 921–6

    Article  PubMed  CAS  Google Scholar 

  126. Carlson KA, Limoges J, Pohlman GD, et al. OTK 18 expression in brain mononuclear phagocytes parallels the severity of HIV-1 encephalitis. J Neuroimmunol 2004; 150: 186–98

    Article  PubMed  CAS  Google Scholar 

  127. Conrad AJ, Schmid P, Syndulko K, et al. Quantifying HIV-1 RNA using the polymerase chain reaction on cerebrospinal fluid and serum of seropositive individuals with and without neurologic abnormalities. J Acquir Immune Defic Syndr Hum Retrovirol 1995; 10: 425–35

    Article  PubMed  CAS  Google Scholar 

  128. Ellis RJ, Moore DJ, Childers ME, et al. Progression to neuropsychological impairment in human immunodeficiency virus infection predicted by elevated cerebrospinal fluid levels of human immunodeficiency virus RNA. Arch Neurol 2002; 59: 923–8

    Article  PubMed  Google Scholar 

  129. Marcotte TD, Deutsch R, McCutchan JA, et al., San Diego HIV Neurobehavioral Research Center (HNRC) Group. Prediction of incident neurocognitive impairment by plasma HIV RNA and CD4 levels early after HIV seroconversion. Arch Neurol 2003; 60: 1406–12

    Article  PubMed  Google Scholar 

  130. McArthur JC, McDermott MP, McClernon D, et al. Attenuated central nervous system infection in advanced HIV/AIDS with combination antiretroviral therapy. Arch Neurol 2004; 61: 1687–96

    Article  PubMed  Google Scholar 

  131. Schmid P, Conrad A, Syndulko K, et al. Quantifying HIV-1 proviral DNA using the polymerase chain reaction on cerebrospinal fluid and blood of seropositive individuals with and without neurologic abnormalities. J Acquir Immune Defic Syndr 1994; 7: 777–88

    PubMed  CAS  Google Scholar 

  132. Yilmaz A, Fuchs D, Hagberg L, et al. Cerebrospinal fluid HIV-1 RNA, intrathecal immunoactivation, and drug concentrations after treatment with a combination of saquinavir, nelfinavir, and two nucleoside analogues: the M61022 study. BMC Infect Dis 2006; 6: 63

    Article  PubMed  CAS  Google Scholar 

  133. McCoig C, Castrejon MM, Saavedra-Lozano J, et al. Cerebrospinal fluid and plasma concentrations of proinflammatory mediators in human immunodeficiency virus-infected children. Pediatr Infect Dis J 2004; 23: 114–8

    Article  PubMed  Google Scholar 

  134. Sevigny JJ, Albert SM, McDermott MP, et al. Evaluation of HIV RNA and markers of immune activation as predictors of HIV-associated dementia. Neurology 2004; 63: 2084–90

    Article  PubMed  CAS  Google Scholar 

  135. Luo X, Carlson KA, Wojna V, et al. Macrophage proteomic fingerprinting predicts HIV-1-associated cognitive impairment. Neurology 2003; 60: 1931–7

    Article  PubMed  CAS  Google Scholar 

  136. Buffet R, Agut H, Chieze F, et al. Virological markers in the cerebrospinal fluid from HIV-1-infected individuals. AIDS 1991; 5: 1419–24

    Article  PubMed  CAS  Google Scholar 

  137. Spector SA, Hsia K, Pratt D, et al. Virologic markers of human immunodeficiency virus type 1 in cerebrospinal fluid. The HIV Neurobehavioral Research Center Group. J Infect Dis 1993; 168: 68–74

    Article  PubMed  CAS  Google Scholar 

  138. Brew BJ, Bhalla RB, Paul M, et al. Cerebrospinal fluid beta 2-microglobulin in patients with AIDS dementia complex: an expanded series including response to zidovudine treatment. AIDS 1992; 6: 461–5

    Article  PubMed  CAS  Google Scholar 

  139. Brew BJ, Dunbar N, Pemberton L, et al. Predictive markers of AIDS dementia complex: CD4 cell count and cerebrospinal fluid concentrations of beta 2-microglobulin and neopterin. J Infect Dis 1996; 174: 294–8

    Article  PubMed  CAS  Google Scholar 

  140. Erichsen D, Lopez AL, Peng H, et al. Neuronal injury regulates fractalkine: relevance for HIV-1 associated dementia. J Neuroimmunol 2003; 138: 144–55

    Article  PubMed  CAS  Google Scholar 

  141. Bayer M, Schmitz S, Westermann J, et al. Evaluation of a new enzyme-linked immunosorbent assay for the determination of neopterin. Clin Lab 2005; 51: 495–504

    PubMed  CAS  Google Scholar 

  142. Heyes MP, Ellis RJ, Ryan L, et al. Elevated cerebrospinal fluid quinolinic acid levels are associated with region-specific cerebral volume loss in HIV infection. Brain 2001; 124: 1033–42

    Article  PubMed  CAS  Google Scholar 

  143. Gonzalez E, Rovin BH, Sen L, et al. HIV-1 infection and AIDS dementia are influenced by a mutant MCP-1 allele linked to increased monocyte infiltration of tissues and MCP-1 levels. Proc Natl Acad Sci U S A 2002; 99: 13795–800

    Article  PubMed  CAS  Google Scholar 

  144. Letendre S, Marquie-Beck J, Singh K, et al., The HNRC Group. The monocyte chemotactic protein-1 -2578 G allele is associated with elevated MCP-1 concentrations in cerebrospinal. 11th Conference on Retroviruses and Opportunistic Infections; 2004 Feb 8–11; San Francisco (CA).

  145. Meeker RB, Boles JC, Bragg DC, et al. Development of neuronal sensitivity to toxins in cerebrospinal fluid from HIV-type 1-infected individuals. AIDS Res Hum Retroviruses 2004; 20: 1072–86

    Article  PubMed  CAS  Google Scholar 

  146. Heyes MP, Brew BJ, Martin A, et al. Quinolinic acid in cerebrospinal fluid and serum in HIV-1 infection: relationship to clinical and neurological status. Ann Neurol 1991; 29: 202–9

    Article  PubMed  CAS  Google Scholar 

  147. Valle M, Price RW, Nilsson A, et al. CSF quinolinic acid levels are determined by local HIV infection: cross-sectional analysis and modeling of dynamics following antiretroviral therapy. Brain 2004; 127 (Pt 5): 1047–60

    Article  PubMed  Google Scholar 

  148. Liu P, Hudson LC, Tompkins MB, et al. Compartmentalization and evolution of feline immunodeficiency virus between the central nervous system and periphery following intra-cerebroventricular or systemic inoculation. J Neurovirol 2006; 12: 307–21

    Article  PubMed  CAS  Google Scholar 

  149. Abdulle S, Mellgren A, Brew BJ, et al. CSF neurofilament protein (NFL): a marker of active HIV-related neurodegeneration. J Neurol 2007; 254(8): 1026–32

    Article  PubMed  CAS  Google Scholar 

  150. Larsson M, Hagberg L, Forsman A, et al. Cerebrospinal fluid catecholamine metabolites in HIV-infected patients. J Neurosci Res 1991; 28: 406–9

    Article  PubMed  CAS  Google Scholar 

  151. Conant K, Garzion-Demo A, Nath A, et al. Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci U S A 1998; 95: 3117–21

    Article  PubMed  CAS  Google Scholar 

  152. Mankowski JL, Queen SE, Clements JE, et al. Cerebrospinal fluid markers that predict SIV CNS disease. J Neuroimmunol 2004; 157: 66–70

    Article  PubMed  CAS  Google Scholar 

  153. Gupta SM, Ray K, Bala M. Evaluation of beta2 microglobulin level as a marker to determine HIV/AIDS progression. J Commun Dis 2004; 36: 166–70

    PubMed  CAS  Google Scholar 

  154. Abdulle S, Hagberg L, Svennerholm B, et al. Continuing intrathecal immunoactivation despite two years of effective antiretroviral therapy against HIV-1 infection. AIDS 2002; 16: 2145–9

    Article  PubMed  CAS  Google Scholar 

  155. Murr C, Widner B, Wirleitner B, et al. Neopterin as a marker for immune system activation. Curr Drug Metab 2002; 3: 175–87

    Article  PubMed  CAS  Google Scholar 

  156. Carra C, Zinellu A, Sotgia S, et al. A new HPLC method for serum neopterin measurement and relationships with plasma thiol levels in healthy subjects. Biomed Chromatogr 2004; 18: 360–6

    Article  CAS  Google Scholar 

  157. Ryan LA, Peng H, Reichsen DA, et al. TNF-related apoptosis-inducing ligand mediates human neuronal apoptosis: links to HIV-1-associated dementia. J Neuroimmunol 2004; 148: 127–39

    Article  PubMed  CAS  Google Scholar 

  158. Gendelman HE, Zheng J, Coulter CL, et al. Suppression of inflammatory neurotoxins by highly active antiretroviral therapy in human immunodeficiency virus-associated dementia. J Infect Dis 1998; 178(4): 1000–7

    Article  PubMed  CAS  Google Scholar 

  159. Laverda AM, Gallo P, De Rossi A, et al. Cerebrospinal fluid analysis in HIV-1-infected children: immunological and virological findings before and after AZT therapy. Acta Paediatr 1994; 83: 1038–42

    Article  PubMed  CAS  Google Scholar 

  160. Towfighi A, Skolasky RL, St Hillaire C, et al. CSF soluble Fas correlates with the severity of HIV-associated dementia. Neurology 2004; 62: 654–6

    Article  PubMed  CAS  Google Scholar 

  161. De Milito A, Hejdeman B, Albert J, et al. High plasma levels of soluble fas in HIV type 1-infected subjects are not normalized during highly active antiretroviral therapy. AIDS Res Hum Retroviruses 2000; 16: 1379–84

    Article  PubMed  Google Scholar 

  162. Sabri F, De Milite A, Pirskanen R, et al. Elevated levels of soluble Fas and Fas ligand in cerebrospinal fluid of patients with AIDS dementia complex. J Neuroimmunol 2001; 114: 197–206

    Article  PubMed  CAS  Google Scholar 

  163. Bednarska A, Podlasin R, Karczewski G, et al. Utility of multiplex PCR for diagnosis of neurological disorders in HIV-infected patients and patients with AIDS [in Polish]. Przegl Epidemiol 2005; 59: 873–9

    PubMed  Google Scholar 

  164. Harrington PR, Haas DW, Ritola K, et al. Compartmentalized human immunodeficiency viras type 1 present in cerebrospinal fluid is produced by short-lived cells. J Virol 2005; 79: 7959–66

    Article  PubMed  CAS  Google Scholar 

  165. Ellis RJ, Gamst AC, Capparelli E, et al. Cerebrospinal fluid HIV RNA originates from both local CNS and systemic sources. Neurology 2000; 54: 927–36

    Article  PubMed  CAS  Google Scholar 

  166. Neuenburg JK, Sinclair E, Nilsson A, et al. HIV-producing T cells in cerebrospinal fluid. J Acquir Immune Defic Syndr 2004; 37: 1237–44

    Article  PubMed  Google Scholar 

  167. Martin C, Albert J, Hansson P, et al. Cerebrospinal fluid mononuclear cell counts influence CSF HIV-1 RNA levels. J Acquir Immune Defic Syndr Hum Retrovirol 1998; 17: 214–9

    Article  PubMed  CAS  Google Scholar 

  168. Wiley CA, Soontornniyomkij V, Radhakrishnan L, et al. Distribution of brain HIV load in AIDS. Brain Pathol 1998; 8: 277–84

    Article  PubMed  CAS  Google Scholar 

  169. Abramo F, Abramo F, Bo S, et al. Regional distribution of lesions in the central nervous system of cats infected with feline immunodeficiency virus. AIDS Res Hum Retroviruses 1995; 11: 1247–53

    Article  PubMed  CAS  Google Scholar 

  170. Aschner M. Astrocytic functions and physiological reactions to injury: the potential to induce and/or exacerbate neuronal dysfunction—a forum position paper. Neurotoxicology 1998; 19: 7–17

    PubMed  CAS  Google Scholar 

  171. Baily GG, Mandai BK. Recurrent transient neurological deficits in advanced HIV infection. AIDS 1995; 9: 709–12

    Article  PubMed  CAS  Google Scholar 

  172. Ball JK, Holmes EC, Whitwell H, et al. Genomic variation of human immunodeficiency viras type 1 (HIV-1): molecular analyses of HIV-1 in sequential blood samples and various organs obtained at autopsy. J Gen Virol 1994; 75: 67–79

    Article  PubMed  Google Scholar 

  173. Banks WA, Ibrahimi F, Farr SA, et al. Effects of wheat germ agglutinin and aging on the regional brain uptake of HIV-1GP120. Life Sci 1999; 65: 81–9

    Article  PubMed  CAS  Google Scholar 

  174. Barks JD, Liu XH, Sun R, et al. gp120, a human immunodeficiency viras-1 coat protein, augments excitotoxic hippocampal injury in perinatal rats. Neuroscience 1997; 76: 397–409

    Article  PubMed  CAS  Google Scholar 

  175. Barks JD, Sun R, Malinak C, et al. gp120, an HIV-1 protein, increases susceptibility to hypoglycemic and ischemic brain injury in perinatal rats. Exp Neurol 1995; 132: 123–33

    Article  PubMed  CAS  Google Scholar 

  176. Beldarrain MG, Garcia-Monco JC, Llorens V, et al. Neuropsychological differences but comparable regional cerebral blood changes in asymptomatic HIV-1-positive and -negative drag addicts. Eur Neurol 1994; 34: 193–8

    Article  PubMed  CAS  Google Scholar 

  177. Bell JE, Anthony IC, Simmonds P. Impact of HIV on regional and cellular organization of the brain. Curr HIV Res 2006; 4: 249–57

    Article  PubMed  CAS  Google Scholar 

  178. Bell JE, Donaldson YK, Lowrie S, et al. Influence of risk group and zidovudine therapy on the development of HIV encephalitis and cognitive impairment in AIDS patients. AIDS 1996; 10: 493–9

    Article  PubMed  CAS  Google Scholar 

  179. Buckstein R, Lim W, Franssen E, et al. CNS prophylaxis and treatment in non-Hodgkin’s lymphoma: variation practice and lessons from the literature. Leuk Lymphoma 2003; 44: 955–62

    Article  PubMed  CAS  Google Scholar 

  180. Burdo TH, Gartner S, Mauger D, et al. Region-specific distribution of human immunodeficiency virus type 1 long terminal repeats containing specific configurations of CCAAT/enhancer-binding protein site II in brains derived from demented and nondemented patients. J Neurovirol 2004; 10(1 Suppl.): S7–S14

    Google Scholar 

  181. Bussiere JL, Hardy LM, Peterson M, et al. Lack of developmental neurotoxicity of MN rgp 120/HIV-l administered subcutaneously to neonatal rats. Toxicol Sci 1999; 48: 90–9

    Article  PubMed  CAS  Google Scholar 

  182. Cardenas VA, Studholme C, Meyerhoff DJ, et al. Chronic active heavy drinking and family history of problem drinking modulate regional brain tissue volumes. Psychiatry Res 2005; 138: 115–30

    Article  PubMed  Google Scholar 

  183. Chang J, Jozwiak R, Wang B, et al. Unique HIV type 1 V3 region sequences derived from six different regions of brain: region-specific evolution within host-determined quasispecies. AIDS Res Hum Retroviruses 1998; 14: 25–30

    Article  PubMed  CAS  Google Scholar 

  184. Chang L, Ernst T, Leonido-Yee M, et al. Perfusion MRI detects rCBF abnormalities in early stages of HIV-cognitive motor complex. Neurology 2000; 54: 389–96

    Article  PubMed  CAS  Google Scholar 

  185. Chen MF, Westmoreland S, Ryzhova EV, et al. Simian immunodeficiency virus envelope compartmentalizes in brain regions independent of neuropathology. J Neurovirol 2006; 12: 73–89

    Article  PubMed  CAS  Google Scholar 

  186. Cheval P, Kinzonzi P, Allaert-Cheval C. Principal clinical manifestations during the course of disease caused by the human immunodeficiency virus (HIV) in Pointe-Noire (Republic of Congo). (307 cases hospitalized during 2 years at the medical service of the Regional Hospital of the Army) [in French]. Med Trop (Mars) 1993; 53: 225–39

    CAS  Google Scholar 

  187. Christensson B, Ljungberg B, Ryding E, et al. SPECT with 99mTc-HMPAO in subjects with HIV infection: cognitive dysfunction correlates with high uptake. Scand J Infect Dis 1999; 31: 349–54

    Article  PubMed  CAS  Google Scholar 

  188. Cole JW, Pinto AN, Hebel JR, et al. Acquired immunodeficiency syndrome and the risk of stroke. Stroke 2004; 35: 51–6

    Article  PubMed  Google Scholar 

  189. Costa DC, Ell PJ, Burns A, et al. CBF tomograms with [99]mTc-HM-PAO in patients with dementia (Alzheimer type and HIV) and Parkinson’s disease: initial results. J Cereb Blood Flow Metab 1988; 8: 109S–15S

    Article  Google Scholar 

  190. Crespo Valades E, Vera Tome A, Diaz Pinto P, et al. An intracranial mass in a patient with HIV infection [in Spanish]. Rev Clin Esp 2000; 200: 33–4

    Google Scholar 

  191. Cunningham AL, Naif H, Saksena N, et al. HIV infection of macrophages and pathogenesis of AIDS dementia complex: interaction of the host cell and viral genotype. J Leukoc Biol 1997; 62: 117–25

    PubMed  CAS  Google Scholar 

  192. Egan VG, Chiswick A, Brettle RP, et al. The Edinburgh cohort of HIV-positive drug users: the relationship between auditory P3 latency, cognitive function and self-rated mood. Psychol Med 1993; 23: 613–22

    Article  PubMed  CAS  Google Scholar 

  193. Ernst T, Itti E, Itti L, et al. Changes in cerebral metabolism are detected prior to perfusion changes in early HIV-CMC: a coregistered (1)H MRS and SPECT study. J Magn Reson Imaging 2000; 12: 859–65

    Article  PubMed  CAS  Google Scholar 

  194. Ernst TM, Chang L, Witt MD, et al. Cerebral toxoplasmosis and lymphoma in AIDS: perfusion MR imaging experience in 13 patients. Radiology 1998; 208: 663–9

    PubMed  CAS  Google Scholar 

  195. Fujimura RK, Khamis I, Shapshak P, et al. Regional quantitative comparison of multispliced to unspliced ratios of HIV-1 RNA copy number in infected human brain. J NeuroAIDS 2004; 2: 45–60

    PubMed  Google Scholar 

  196. Gelman BB, Guinto Jr FC. Morphometry, histopathology, and tomography of cerebral atrophy in the acquired immunodeficiency syndrome. Ann Neurol 1992; 32: 31–40

    Article  PubMed  CAS  Google Scholar 

  197. Ghorpade A, Persidsky Y, Swindells S, et al. Neuroinflammatory responses from microglia recovered from HIV-1-infected and seronegative subjects. J Neuroimmunol 2005; 163: 145–56

    Article  PubMed  CAS  Google Scholar 

  198. Groopman JE. Neoplasms in the acquired immune deficiency syndrome: the multidisciplinary approach to treatment. Semin Oncol 1987; 14Suppl. 2: 1S–6S

    Google Scholar 

  199. Gullotta F, Masini T, Scarlato G, et al. Progressive multifocal leukoencephalopathy and gliomas in a HIV-negative patient. Pathol Res Pract 1992; 188: 964–72

    Article  PubMed  CAS  Google Scholar 

  200. Harris GJ, Pearlson GD, McArthur JC, et al. Altered cortical blood flow in HIV-seropositive individuals with and without dementia: a single photon emission computed tomography study. AIDS 1994; 8: 495–9

    Article  PubMed  CAS  Google Scholar 

  201. Hellman RS, Tikofsky RS, Van Heertum R, et al. A multi-institutional study of interobserver agreement in the evaluation of dementia with rCBF/SPET technetium-99m exametazime (HMPAO). Eur J Nucl Med 1994; 21: 306–13

    Article  PubMed  CAS  Google Scholar 

  202. Hestad K, McArthur JH, Dal Pan GJ, et al. Regional brain atrophy in HIV-1 infection: association with specific neuropsychological test performance. Acta Neurol Scand 1993; 88: 112–8

    Article  PubMed  CAS  Google Scholar 

  203. Holman BL, Johnson KA, Gerada B, et al. The scintigraphic appearance of Alzheimer’s disease: a prospective study using technetium-99m-HMPAO SPECT. J Nucl Med 1992; 33: 181–5

    PubMed  CAS  Google Scholar 

  204. Hughes PJ, McLean KA, Lane RJ. Cranial polyneuropathy and brainstem disorder at the time of seroconversion in HIV infection. Int J STD AIDS 1992; 3: 60–1

    PubMed  CAS  Google Scholar 

  205. Jernigan TL, Garnst AC, Archibald SL, et al. Effects of methamphetamine dependence and HIV infection on cerebral morphology. Am J Psychiatry 2005; 162: 1461–72

    Article  PubMed  Google Scholar 

  206. Katayama S, Momose T, Sano I, et al. The mechanism of controlling regional cerebral blood flow in patients with localization-related epilepsy [in Japanese]. Seishin Shinkeigaku Zasshi 1996; 98: 89–114

    PubMed  CAS  Google Scholar 

  207. Keohane C, Gray F. Central nervous system pathology in children with AIDS: a review. Ir J Med Sci 1991; 160: 277–81

    Article  PubMed  CAS  Google Scholar 

  208. Keohane C, Robain O, Ponsot G, et al. Cerebral lymphoma and HIV encephalitis in a case of pediatric AIDS, with pre-existing multicystic encephalomalacia. Ir J Med Sci 1991; 160: 179–82

    Article  PubMed  CAS  Google Scholar 

  209. Kieburtz K, Ketonen L, Cox C, et al. Cognitive performance and regional brain volume in human immunodeficiency virus type 1 infection. Arch Neurol 1996; 53: 155–8

    Article  PubMed  CAS  Google Scholar 

  210. Kolson DL, Sabnekar P, Baybis M, et al. Gene expression in TUNEL-positive neurons in human immunodeficiency virus-infected brain. J Neurovirol 2004; 10(1 Suppl.): 102S–7S

    Google Scholar 

  211. Kustova Y, Espey MG, Sci Y, et al. Regional decreases [corrected] in AMPA receptor density in mice infected with the LP-BM5 murine leukemia virus. Neuroreport 1997; 8: 1243–7

    Article  PubMed  CAS  Google Scholar 

  212. Lackner AA, Dandekar S, Gardner MB. Neurobiology of simian and feline immunodeficiency virus infections. Brain Pathol 1991; 1: 201–12

    Article  PubMed  CAS  Google Scholar 

  213. Laing RB, Flegg PJ, Brettle RP, et al. Clinical features, outcome and survival from cerebral toxoplasmosis in Edinburgh AIDS patients. Int J STD AIDS 1996; 7: 258–64

    Article  PubMed  CAS  Google Scholar 

  214. Lane JH, Sasseville VG, Smith MO, et al. Neuroinvasion by simian immunodeficiency virus coincides with increased numbers of perivascular macro-phages/microglia and intrathecal immune activation. J Neurovirol 1996; 2: 423–32

    Article  PubMed  CAS  Google Scholar 

  215. Lane JH, Tarantal AF, Pauley D, et al. Localization of simian immunodeficiency virus nucleic acid and antigen in brains of fetal macaques inoculated in utero. Am J Pathol 1996; 149: 1097–104

    PubMed  CAS  Google Scholar 

  216. Antinori A, Perno CF, Giancola ML, et al. Efficacy of cerebrospinal fluid (CSF)-penetrating antiretroviral drugs against HIV in the neurological compartment: different patterns of phenotypic resistance in CSF and plasma. Clin Infect Dis 2005; 41: 1787–93

    Article  PubMed  CAS  Google Scholar 

  217. Clements JE, Li M, Gama L. The central nervous system is a viral reservoir in simian immunodeficiency virus-infected macaques on combined antiretroviral therapy: a model for human immunodeficiency virus patients on highly active antiretroviral therapy. J Neurovirol 2005; 11: 180–9

    PubMed  CAS  Google Scholar 

  218. Spudich S, Lollo N, Liegler T, et al. Treatment benefit on cerebrospinal fluid HIV-1 Levels in the setting of systemic virological suppression and failure. J Infect Dis 2006; 194: 1686–96

    Article  PubMed  CAS  Google Scholar 

  219. De Ronchi D, Faranca I, Berardi D, et al. Risk factors for cognitive impairment in HIV-1-infected persons with different risk behaviors. Arch Neurol 2002; 59: 812–8

    Article  PubMed  Google Scholar 

  220. Brew BJ. Evidence for a change in AIDS dementia complex in the era of highly active antiretroviral therapy and the possibility of new forms of AIDS dementia complex. AIDS 2004; 18(1 Suppl.): 75S–8S

    Google Scholar 

  221. Maschke M, Kastrup O, Esser S, et al. Incidence and prevalence of neurological disorders associated with HIV since the introduction of highly active antiretroviral therapy (HAART). J Neurol Neurosurg Psychiatry 2000; 69: 376–80

    Article  PubMed  CAS  Google Scholar 

  222. Valcour V, Yee P, Williams AE, et al. Lowest ever CD4 lymphocyte count (CD4 nadir) as a predictor of current cognitive and neurological status in human immunodeficiency virus type 1 infection: the Hawaii Aging with HIV Cohort. J Neurovirol 2006; 12: 387–91

    Article  PubMed  Google Scholar 

  223. Tozzi V, Balestra P, Lorenzini P, et al. Prevalence and risk factors for human immunodeficiency virus-associated neurocognitive impairment, 1996 to 2002: results from an urban observational cohort. J Neurovirol 2005; 11: 265–73

    Article  PubMed  Google Scholar 

  224. McArthur JC, Haughey N, Gartner S, et al. Human immunodeficiency virus-associated dementia: an evolving disease. J Neurovirol 2003; 9: 205–21

    PubMed  CAS  Google Scholar 

  225. Cysique LA, Brew BJ, Halman M, et al. Undetectable cerebrospinal fluid HIV RNA and beta-2 microglobulin do not indicate inactive AIDS dementia complex in highly active antiretroviral therapy-treated patients. J Acquir Immune Defic Syndr 2005; 39: 426–9

    Article  PubMed  CAS  Google Scholar 

  226. Anthony IC, Ramage SN, Carnie FW, et al. Influence of HAART on HIV-related CNS disease and neuroinflammation. J Neuropathol Exp Neurol 2005; 64: 529–36

    PubMed  CAS  Google Scholar 

  227. Roberts ES, Zandonatti MA, Watry DD, et al. Induction of pathogenic sets of genes in macrophages and neurons in NeuroAIDS. Am J Pathol 2003; 162: 2041–57

    Article  PubMed  CAS  Google Scholar 

  228. Chiappelli F, Alwan J, Prolo P, et al. Neuro-immunity in stress-related oral ulcerations: a fractal analysis. Frontiers Biosci 2005; 10: 3034–41

    Article  CAS  Google Scholar 

  229. Chiappelli F. Immunophysiological role and clinical implications of non-immunoglobulin soluble products of immune effector cells. Adv Neuoimmunol 1991; 1: 234–40

    Google Scholar 

  230. Heaton RK, Grant I, Butters N, et al. The HNRC 500: neuropsychology of HIV infection at different disease stages. HIV Neurobehavioral Research Center. J Int Neuropsychol Soc 1995; 1: 231–51

    Article  PubMed  CAS  Google Scholar 

  231. Marcondes MC, Burudi EM, Huitron-Resendiz S, et al. Highly activated CD8(+) T cells in the brain correlate with early central nervous system dysfunction in simian immunodeficiency virus infection. J Immunol 2001; 167: 5429–38

    PubMed  CAS  Google Scholar 

  232. Roberts ES, Masliah E, Fox HS. CD163 identifies a unique population of ramified microglia in HIV encephalitis (HIVE). J Neuropathol Exp Neurol 2004; 63: 1255–64

    PubMed  Google Scholar 

  233. Antinori A, Arendt G, Becker JT, et al. Biomarkers of HIV-associated neurocognitive disorders. HIV Infection and the Central Nervous System: Developed and Resource limited Settings; 2005 Jun 11-13; Rome

  234. Shapshak P, Duncan R, Turchan J, et al. Bioinformatics models in drug abuse and NeuroAIDS: using and developing databases. Bioinformation 2006; 1(3): 86–8

    Article  PubMed  Google Scholar 

  235. Shapshak P, Duncan R, Nath A, et al. Gene chromosomal organization and expression in cultured human neurons exposed to cocaine and HIV-1 proteins gp120 and tat: drug abuse and NeuroAIDS. Frontiers Biosci 2006; 11: 1774–93

    Article  CAS  Google Scholar 

  236. Shapshak, P, Duncan, R, Torres-Munoz JE, et al. Analytic approaches to differential gene expression in AIDS vs. control brains. Frontiers Biosci 2004; 9: 2935–46

    Article  CAS  Google Scholar 

  237. Shapshak P, Minagar A, Duran EM, et al. Gene expression in HIV associated dementia. In: Minagar A, Alexander JS, editors. Inflammatory disorders of the nervous system: clinical aspects, pathogenesis, and management. Totowa (NJ): Humana Press, 2005: 305–18

    Chapter  Google Scholar 

  238. Minagar A, Shapshak P, Alexander JS. Pathogenesis of HIV associated dementia and multiple sclerosis: role of microglia and astrocytes. In: Aschner M, Costa LG, editors. The role of Glia in neurotoxicity. 2nd ed. Boca Raton (FL): CRC Press, 2005: 263–78

    Google Scholar 

  239. Minagar A, Shapshak P. HIV associated dementia: clinical features and pathogenesis. In: Minagar A, Shapshak P, editors. NEURO-AIDS. Hauppauge (NY): Nova Science Publications, 2005

    Google Scholar 

Download references

Acknowledgments

The work was supported by grants to Dr Shapshak (NIH grants DA 14533, DA 12580, and GM 056529), Drs Commins and Singer (NIH grant NS 38841), and Dr Chiappelli (NIH grant DA 07683).

The authors have no conflicts of interest directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Shapshak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minagar, A., Commins, D., Alexander, J.S. et al. NeuroAIDS. Mol Diag Ther 12, 25–43 (2008). https://doi.org/10.1007/BF03256266

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03256266

Keywords

Navigation