Skip to main content

Advertisement

Log in

Such small hands: the roles of centrins/caltractins in the centriole and in genome maintenance

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Centrins are small, highly conserved members of the EF-hand superfamily of calcium-binding proteins that are found throughout eukaryotes. They play a major role in ensuring the duplication and appropriate functioning of the ciliary basal bodies in ciliated cells. They have also been localised to the centrosome, which is the major microtubule organising centre in animal somatic cells. We describe the identification, cloning and characterisation of centrins in multiple eukaryotic species. Although centrins have been implicated in centriole biogenesis, recent results have indicated that centrosome duplication can, in fact, occur in the absence of centrins. We discuss these data and the non-centrosomal functions that are emerging for the centrins. In particular, we discuss the involvement of centrins in nucleotide excision repair, a process that repairs the DNA lesions that are induced primarily by ultraviolet irradiation. We discuss how centrin may be involved in these diverse processes and contribute to nuclear and cytoplasmic events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Doxsey S, McCollum D, Theurkauf W (2005) Centrosomes in cellular regulation. Annu Rev Cell Dev Biol 21:411–434

    Article  PubMed  CAS  Google Scholar 

  2. Bettencourt-Dias M, Glover DM (2007) Centrosome biogenesis and function: centrosomics brings new understanding. Nat Rev Mol Cell Biol 8(6):451–463

    Article  PubMed  CAS  Google Scholar 

  3. Nigg EA, Stearns T (2011) The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol 13(10):1154–1160. doi:10.1038/ncb2345

    Article  PubMed  CAS  Google Scholar 

  4. Ganem NJ, Godinho SA, Pellman D (2009) A mechanism linking extra centrosomes to chromosomal instability. Nature 460(7252):278–282

    Article  PubMed  CAS  Google Scholar 

  5. Delattre M, Gonczy P (2004) The arithmetic of centrosome biogenesis. J Cell Sci 117(Pt 9):1619–1630

    Article  PubMed  CAS  Google Scholar 

  6. Hinchcliffe EH, Li C, Thompson EA, Maller JL, Sluder G (1999) Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science 283(5403):851–854

    Article  PubMed  CAS  Google Scholar 

  7. Lacey KR, Jackson PK, Stearns T (1999) Cyclin-dependent kinase control of centrosome duplication. Proc Natl Acad Sci USA 96(6):2817–2822

    Article  PubMed  CAS  Google Scholar 

  8. Matsumoto Y, Hayashi K, Nishida E (1999) Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells. Curr Biol 9(8):429–432

    Article  PubMed  CAS  Google Scholar 

  9. Meraldi P, Lukas J, Fry AM, Bartek J, Nigg EA (1999) Centrosome duplication in mammalian somatic cells requires E2F and Cdk2-cyclin A. Nat Cell Biol 1(2):88–93

    Article  PubMed  CAS  Google Scholar 

  10. Tsou MF, Stearns T (2006) Mechanism limiting centrosome duplication to once per cell cycle. Nature 442(7105):947–951

    Article  PubMed  CAS  Google Scholar 

  11. Tsou MF, Wang WJ, George KA, Uryu K, Stearns T, Jallepalli PV (2009) Polo kinase and separase regulate the mitotic licensing of centriole duplication in human cells. Dev Cell 17(3):344–354

    Article  PubMed  CAS  Google Scholar 

  12. Nakamura A, Arai H, Fujita N (2009) Centrosomal Aki1 and cohesin function in separase-regulated centriole disengagement. J Cell Biol 187(5):607–614. doi:10.1083/jcb.200906019

    Article  PubMed  CAS  Google Scholar 

  13. Schockel L, Mockel M, Mayer B, Boos D, Stemmann O (2011) Cleavage of cohesin rings coordinates the separation of centrioles and chromatids. Nat Cell Biol 13(8):966–972. doi:10.1038/ncb2280

    Article  PubMed  CAS  Google Scholar 

  14. Boveri T (2008) Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J Cell Sci 121 Suppl 1:1–84

    Google Scholar 

  15. D’Assoro AB, Lingle WL, Salisbury JL (2002) Centrosome amplification and the development of cancer. Oncogene 21(40):6146–6153

    Article  PubMed  CAS  Google Scholar 

  16. Lingle WL, Lutz WH, Ingle JN, Maihle NJ, Salisbury JL (1998) Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proc Natl Acad Sci USA 95(6):2950–2955

    Article  PubMed  CAS  Google Scholar 

  17. Pihan GA, Purohit A, Wallace J, Malhotra R, Liotta L, Doxsey SJ (2001) Centrosome defects can account for cellular and genetic changes that characterize prostate cancer progression. Cancer Res 61(5):2212–2219

    PubMed  CAS  Google Scholar 

  18. Duensing S, Lee LY, Duensing A, Basile J, Piboonniyom S, Gonzalez S, Crum CP, Munger K (2000) The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc Natl Acad Sci USA 97(18):10002–10007. doi:10.1073/pnas.170093297

    Article  PubMed  CAS  Google Scholar 

  19. Nigg EA (2002) Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer 2(11):815–825

    Article  PubMed  CAS  Google Scholar 

  20. Lingle WL, Barrett SL, Negron VC, D’Assoro AB, Boeneman K, Liu W, Whitehead CM, Reynolds C, Salisbury JL (2002) Centrosome amplification drives chromosomal instability in breast tumor development. Proc Natl Acad Sci USA 99(4):1978–1983

    Article  PubMed  CAS  Google Scholar 

  21. Brinkley BR (2001) Managing the centrosome numbers game: from chaos to stability in cancer cell division. Trends Cell Biol 11(1):18–21

    Article  PubMed  CAS  Google Scholar 

  22. Sluder G, Nordberg JJ (2004) The good, the bad and the ugly: the practical consequences of centrosome amplification. Curr Opin Cell Biol 16(1):49–54

    Article  PubMed  CAS  Google Scholar 

  23. Vorobjev IA, Chentsov YuS (1982) Centrioles in the cell cycle. I. Epithelial cells. J Cell Biol 93(3):938–949

    Article  PubMed  CAS  Google Scholar 

  24. Hinchcliffe EH, Sluder G (2001) “It takes two to tango”: understanding how centrosome duplication is regulated throughout the cell cycle. Genes Dev 15(10):1167–1181

    Article  PubMed  CAS  Google Scholar 

  25. Nigg EA (2007) Centrosome duplication: of rules and licenses. Trends Cell Biol 17(5):215–221

    Article  PubMed  CAS  Google Scholar 

  26. Guarguaglini G, Duncan PI, Stierhof YD, Holmstrom T, Duensing S, Nigg EA (2005) The forkhead-associated domain protein Cep170 interacts with Polo-like kinase 1 and serves as a marker for mature centrioles. Mol Biol Cell 16(3):1095–1107

    Article  PubMed  CAS  Google Scholar 

  27. Duensing A, Liu Y, Perdreau SA, Kleylein-Sohn J, Nigg EA, Duensing S (2007) Centriole overduplication through the concurrent formation of multiple daughter centrioles at single maternal templates. Oncogene 26(43):6280–6288

    Article  PubMed  CAS  Google Scholar 

  28. Rodrigues-Martins A, Riparbelli M, Callaini G, Glover DM, Bettencourt-Dias M (2007) Revisiting the role of the mother centriole in centriole biogenesis. Science 316(5827):1046–1050

    Article  PubMed  CAS  Google Scholar 

  29. Kleylein-Sohn J, Westendorf J, Le Clech M, Habedanck R, Stierhof YD, Nigg EA (2007) Plk4-induced centriole biogenesis in human cells. Dev Cell 13(2):190–202

    Article  PubMed  CAS  Google Scholar 

  30. Uetake Y, Loncarek J, Nordberg JJ, English CN, La Terra S, Khodjakov A, Sluder G (2007) Cell cycle progression and de novo centriole assembly after centrosomal removal in untransformed human cells. J Cell Biol 176(2):173–182

    Article  PubMed  CAS  Google Scholar 

  31. La Terra S, English CN, Hergert P, McEwen BF, Sluder G, Khodjakov A (2005) The de novo centriole assembly pathway in HeLa cells: cell cycle progression and centriole assembly/maturation. J Cell Biol 168(5):713–722

    Article  PubMed  CAS  Google Scholar 

  32. Khodjakov A, Rieder CL, Sluder G, Cassels G, Sibon O, Wang CL (2002) De novo formation of centrosomes in vertebrate cells arrested during S phase. J Cell Biol 158(7):1171–1181

    Article  PubMed  CAS  Google Scholar 

  33. Dodson H, Bourke E, Jeffers LJ, Vagnarelli P, Sonoda E, Takeda S, Earnshaw WC, Merdes A, Morrison C (2004) Centrosome amplification induced by DNA damage occurs during a prolonged G2 phase and involves ATM. Embo J 23(19):3864–3873

    Article  PubMed  CAS  Google Scholar 

  34. Dodson H, Wheatley SP, Morrison CG (2007) Involvement of centrosome amplification in radiation-induced mitotic catastrophe. Cell Cycle 6(3):364–370

    Article  PubMed  CAS  Google Scholar 

  35. Sato N, Mizumoto K, Nakamura M, Tanaka M (2000) Radiation-induced centrosome overduplication and multiple mitotic spindles in human tumor cells. Exp Cell Res 255(2):321–326

    Article  PubMed  CAS  Google Scholar 

  36. Balczon R, Bao L, Zimmer WE, Brown K, Zinkowski RP, Brinkley BR (1995) Dissociation of centrosome replication events from cycles of DNA synthesis and mitotic division in hydroxyurea-arrested Chinese hamster ovary cells. J Cell Biol 130(1):105–115

    Article  PubMed  CAS  Google Scholar 

  37. Meraldi P, Honda R, Nigg EA (2002) Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53−/− cells. Embo J 21(4):483–492

    Article  PubMed  CAS  Google Scholar 

  38. Bertrand P, Lambert S, Joubert C, Lopez BS (2003) Overexpression of mammalian Rad51 does not stimulate tumorigenesis while a dominant-negative Rad51 affects centrosome fragmentation, ploidy and stimulates tumorigenesis, in p53-defective CHO cells. Oncogene 22(48):7587–7592

    Article  PubMed  CAS  Google Scholar 

  39. Fukasawa K, Choi T, Kuriyama R, Rulong S, Vande Woude GF (1996) Abnormal centrosome amplification in the absence of p53. Science 271(5256):1744–1747

    Article  PubMed  CAS  Google Scholar 

  40. Griffin CS, Simpson PJ, Wilson CR, Thacker J (2000) Mammalian recombination-repair genes XRCC2 and XRCC3 promote correct chromosome segregation. Nat Cell Biol 2(10):757–761

    Article  PubMed  CAS  Google Scholar 

  41. Kraakman-van der Zwet M, Overkamp WJ, van Lange RE, Essers J, van Duijn-Goedhart A, Wiggers I, Swaminathan S, van Buul PP, Errami A, Tan RT, Jaspers NG, Sharan SK, Kanaar R, Zdzienicka MZ (2002) Brca2 (XRCC11) deficiency results in radioresistant DNA synthesis and a higher frequency of spontaneous deletions. Mol Cell Biol 22(2):669–679

    Article  PubMed  CAS  Google Scholar 

  42. Mantel C, Braun SE, Reid S, Henegariu O, Liu L, Hangoc G, Broxmeyer HE (1999) p21(cip-1/waf-1) deficiency causes deformed nuclear architecture, centriole overduplication, polyploidy, and relaxed microtubule damage checkpoints in human hematopoietic cells. Blood 93(4):1390–1398

    PubMed  CAS  Google Scholar 

  43. Tutt AN, van Oostrom CT, Ross GM, van Steeg H, Ashworth A (2002) Disruption of Brca2 increases the spontaneous mutation rate in vivo: synergism with ionizing radiation. EMBO Rep 3(3):255–260

    Article  PubMed  CAS  Google Scholar 

  44. Yamaguchi-Iwai Y, Sonoda E, Sasaki MS, Morrison C, Haraguchi T, Hiraoka Y, Yamashita YM, Yagi T, Takata M, Price C, Kakazu N, Takeda S (1999) Mre11 is essential for the maintenance of chromosomal DNA in vertebrate cells. Embo J 18(23):6619–6629

    Article  PubMed  CAS  Google Scholar 

  45. Guiducci C, Cerone MA, Bacchetti S (2001) Expression of mutant telomerase in immortal telomerase-negative human cells results in cell cycle deregulation, nuclear and chromosomal abnormalities and rapid loss of viability. Oncogene 20(6):714–725

    Article  PubMed  CAS  Google Scholar 

  46. Duensing A, Liu Y, Tseng M, Malumbres M, Barbacid M, Duensing S (2006) Cyclin-dependent kinase 2 is dispensable for normal centrosome duplication but required for oncogene-induced centrosome overduplication. Oncogene 25(20):2943–2949

    Article  PubMed  CAS  Google Scholar 

  47. Duensing S, Munger K (2003) Human papillomavirus type 16 E7 oncoprotein can induce abnormal centrosome duplication through a mechanism independent of inactivation of retinoblastoma protein family members. J Virol 77(22):12331–12335

    Article  PubMed  CAS  Google Scholar 

  48. Watanabe N, Yamaguchi T, Akimoto Y, Rattner JB, Hirano H, Nakauchi H (2000) Induction of M-phase arrest and apoptosis after HIV-1 Vpr expression through uncoupling of nuclear and centrosomal cycle in HeLa cells. Exp Cell Res 258(2):261–269

    Article  PubMed  CAS  Google Scholar 

  49. Daniels MJ, Wang Y, Lee M, Venkitaraman AR (2004) Abnormal cytokinesis in cells deficient in the breast cancer susceptibility protein BRCA2. Science 306(5697):876–879

    Article  PubMed  CAS  Google Scholar 

  50. Hinchcliffe EH, Cassels GO, Rieder CL, Sluder G (1998) The coordination of centrosome reproduction with nuclear events of the cell cycle in the sea urchin zygote. J Cell Biol 140(6):1417–1426

    Article  PubMed  CAS  Google Scholar 

  51. Wong C, Stearns T (2003) Centrosome number is controlled by a centrosome-intrinsic block to reduplication. Nat Cell Biol 5(6):539–544

    Article  PubMed  CAS  Google Scholar 

  52. Hochegger H, Dejsuphong D, Sonoda E, Saberi A, Rajendra E, Kirk J, Hunt T, Takeda S (2007) An essential role for Cdk1 in S phase control is revealed via chemical genetics in vertebrate cells. J Cell Biol 178(2):257–268

    Article  PubMed  CAS  Google Scholar 

  53. Adon AM, Zeng X, Harrison MK, Sannem S, Kiyokawa H, Kaldis P, Saavedra HI (2010) Cdk2 and Cdk4 regulate the centrosome cycle and are critical mediators of centrosome amplification in p53-null cells. Mol Cell Biol 30(3):694–710. doi:10.1128/MCB.00253-09

    Article  PubMed  CAS  Google Scholar 

  54. Prosser SL, Straatman KR, Fry AM (2009) Molecular dissection of the centrosome overduplication pathway in S-phase arrested cells. Mol Cell Biol 29:1760–1773

    Google Scholar 

  55. Fukasawa K (2008) P53, cyclin-dependent kinase and abnormal amplification of centrosomes. Biochim Biophys Acta 1786(1):15–23. doi:10.1016/j.bbcan.2008.04.002

    PubMed  CAS  Google Scholar 

  56. Mussman JG, Horn HF, Carroll PE, Okuda M, Tarapore P, Donehower LA, Fukasawa K (2000) Synergistic induction of centrosome hyperamplification by loss of p53 and cyclin E overexpression. Oncogene 19(13):1635–1646

    Article  PubMed  CAS  Google Scholar 

  57. Spruck CH, Won KA, Reed SI (1999) Deregulated cyclin E induces chromosome instability. Nature 401(6750):297–300

    Article  PubMed  CAS  Google Scholar 

  58. Kawamura K, Izumi H, Ma Z, Ikeda R, Moriyama M, Tanaka T, Nojima T, Levin LS, Fujikawa-Yamamoto K, Suzuki K, Fukasawa K (2004) Induction of centrosome amplification and chromosome instability in human bladder cancer cells by p53 mutation and cyclin E overexpression. Cancer Res 64(14):4800–4809

    Article  PubMed  CAS  Google Scholar 

  59. Sato C, Kuriyama R, Nishizawa K (1983) Microtubule-organizing centers abnormal in number, structure, and nucleating activity in x-irradiated mammalian cells. J Cell Biol 96(3):776–782

    Article  PubMed  CAS  Google Scholar 

  60. Bourke E, Dodson H, Merdes A, Cuffe L, Zachos G, Walker M, Gillespie D, Morrison CG (2007) DNA damage induces Chk1-dependent centrosome amplification. EMBO Rep 8(6):603–609

    Article  PubMed  CAS  Google Scholar 

  61. Bourke E, Brown JA, Takeda S, Hochegger H, Morrison CG (2010) DNA damage induces Chk1-dependent threonine-160 phosphorylation and activation of Cdk2. Oncogene 29(4):616–624. doi:10.1038/onc.2009.340

    Article  PubMed  CAS  Google Scholar 

  62. Sibon OC, Kelkar A, Lemstra W, Theurkauf WE (2000) DNA-replication/DNA-damage-dependent centrosome inactivation in Drosophila embryos. Nat Cell Biol 2(2):90–95

    Article  PubMed  CAS  Google Scholar 

  63. Hut HM, Lemstra W, Blaauw EH, Van Cappellen GW, Kampinga HH, Sibon OC (2003) Centrosomes split in the presence of impaired DNA integrity during mitosis. Mol Biol Cell 14(5):1993–2004

    Article  PubMed  CAS  Google Scholar 

  64. Saladino C, Bourke E, Conroy PC, Morrison CG (2009) Centriole separation in DNA damage-induced centrosome amplification. Environ Mol Mutagen 50(8):725–732

    Article  PubMed  CAS  Google Scholar 

  65. Inanc B, Dodson H, Morrison CG (2010) A centrosome-autonomous signal that involves centriole disengagement permits centrosome duplication in G2 phase after DNA damage. Mol Biol Cell 21(22):3866–3877. doi:10.1091/mbc.E10-02-0124

    Article  PubMed  CAS  Google Scholar 

  66. Smits VA, Klompmaker R, Arnaud L, Rijksen G, Nigg EA, Medema RH (2000) Polo-like kinase-1 is a target of the DNA damage checkpoint. Nat Cell Biol 2(9):672–676

    Article  PubMed  CAS  Google Scholar 

  67. van Vugt MA, Smits VA, Klompmaker R, Medema RH (2001) Inhibition of Polo-like kinase-1 by DNA damage occurs in an ATM- or ATR-dependent fashion. J Biol Chem 276(45):41656–41660

    Article  PubMed  Google Scholar 

  68. Zhang W, Fletcher L, Muschel RJ (2005) The role of Polo-like kinase 1 in the inhibition of centrosome separation after ionizing radiation. J Biol Chem 280(52):42994–42999

    Article  PubMed  CAS  Google Scholar 

  69. Loffler H, Lukas J, Bartek J, Kramer A (2006) Structure meets function—centrosomes, genome maintenance and the DNA damage response. Exp Cell Res 312(14):2633–2640

    Article  PubMed  CAS  Google Scholar 

  70. Fukasawa K (2007) Oncogenes and tumour suppressors take on centrosomes. Nat Rev Cancer 7(12):911–924

    Article  PubMed  CAS  Google Scholar 

  71. Shimada M, Komatsu K (2009) Emerging connection between centrosome and DNA repair machinery. J Radiat Res (Tokyo) 50(4):295–301

    Article  CAS  Google Scholar 

  72. Jackman M, Lindon C, Nigg EA, Pines J (2003) Active cyclin B1-Cdk1 first appears on centrosomes in prophase. Nat Cell Biol 5(2):143–148

    Article  PubMed  CAS  Google Scholar 

  73. Kramer A, Mailand N, Lukas C, Syljuasen RG, Wilkinson CJ, Nigg EA, Bartek J, Lukas J (2004) Centrosome-associated Chk1 prevents premature activation of cyclin-B-Cdk1 kinase. Nat Cell Biol 6(9):884–891

    Article  PubMed  CAS  Google Scholar 

  74. Loffler H, Bochtler T, Fritz B, Tews B, Ho AD, Lukas J, Bartek J, Kramer A (2007) DNA damage-induced accumulation of centrosomal Chk1 contributes to its checkpoint function. Cell Cycle 6(20):2541–2548

    Article  PubMed  Google Scholar 

  75. Tibelius A, Marhold J, Zentgraf H, Heilig CE, Neitzel H, Ducommun B, Rauch A, Ho AD, Bartek J, Kramer A (2009) Microcephalin and pericentrin regulate mitotic entry via centrosome-associated Chk1. J Cell Biol 185(7):1149–1157

    Article  PubMed  CAS  Google Scholar 

  76. Boutros R, Lorenzo C, Mondesert O, Jauneau A, Oakes V, Dozier C, Gabrielli B, Ducommun B (2011) CDC25B associates with a centrin 2-containing complex and is involved in maintaining centrosome integrity. Biol Cell 103(2):55–68. doi:10.1042/BC20100111

    Article  PubMed  CAS  Google Scholar 

  77. Salisbury JL, Baron A, Surek B, Melkonian M (1984) Striated flagellar roots: isolation and partial characterization of a calcium-modulated contractile organelle. J Cell Biol 99(3):962–970

    Article  PubMed  CAS  Google Scholar 

  78. Wright RL, Salisbury J, Jarvik JW (1985) A nucleus-basal body connector in Chlamydomonas reinhardtii that may function in basal body localization or segregation. J Cell Biol 101(5 Pt 1):1903–1912

    Article  PubMed  CAS  Google Scholar 

  79. McFadden GI, Schulze D, Surek B, Salisbury JL, Melkonian M (1987) Basal body reorientation mediated by a Ca2+-modulated contractile protein. J Cell Biol 105(2):903–912

    Article  PubMed  CAS  Google Scholar 

  80. Schulze D, Robenek H, McFadden GI, Melkonian M (1987) Immunolocalization of a Ca2+-modulated contractile protein in the flagellar apparatus of green algae: the nucleus-basal body connector. Eur J Cell Biol 45:51–61

    Google Scholar 

  81. Salisbury JL, Baron AT, Sanders MA (1988) The centrin-based cytoskeleton of Chlamydomonas reinhardtii: distribution in interphase and mitotic cells. J Cell Biol 107(2):635–641

    Article  PubMed  CAS  Google Scholar 

  82. Salisbury JL, Sanders MA, Harpst L (1987) Flagellar root contraction and nuclear movement during flagellar regeneration in Chlamydomonas reinhardtii. J Cell Biol 105(4):1799–1805

    Article  PubMed  CAS  Google Scholar 

  83. Sanders MA, Salisbury JL (1994) Centrin plays an essential role in microtubule severing during flagellar excision in Chlamydomonas reinhardtii. J Cell Biol 124(5):795–805

    Article  PubMed  CAS  Google Scholar 

  84. Geimer S, Melkonian M (2005) Centrin scaffold in Chlamydomonas reinhardtii revealed by immunoelectron microscopy. Eukaryot Cell 4(7):1253–1263. doi:10.1128/EC.4.7.1253-1263.2005

    Article  PubMed  CAS  Google Scholar 

  85. Huang B, Watterson DM, Lee VD, Schibler MJ (1988) Purification and characterization of a basal body-associated Ca2+-binding protein. J Cell Biol 107(1):121–131

    Article  PubMed  CAS  Google Scholar 

  86. Huang B, Mengersen A, Lee VD (1988) Molecular cloning of cDNA for caltractin, a basal body-associated Ca2+-binding protein: homology in its protein sequence with calmodulin and the yeast CDC31 gene product. J Cell Biol 107(1):133–140

    Article  PubMed  CAS  Google Scholar 

  87. Baum P, Furlong C, Byers B (1986) Yeast gene required for spindle pole body duplication: homology of its product with Ca2+-binding proteins. Proc Natl Acad Sci USA 83(15):5512–5516

    Article  PubMed  CAS  Google Scholar 

  88. Baron AT, Salisbury JL (1988) Identification and localization of a novel, cytoskeletal, centrosome-associated protein in PtK2 cells. J Cell Biol 107(6 Pt 2):2669–2678

    Article  PubMed  CAS  Google Scholar 

  89. Kretsinger RH, Nockolds CE (1973) Carp muscle calcium-binding protein. II. Structure determination and general description. J Biol Chem 248(9):3313–3326

    PubMed  CAS  Google Scholar 

  90. Kretsinger RH (1976) Calcium-binding proteins. Annu Rev Biochem 45:239–266. doi:10.1146/annurev.bi.45.070176.001323

    Article  PubMed  CAS  Google Scholar 

  91. Salisbury JL, Baron AT, Coling DE, Martindale VE, Sanders MA (1986) Calcium-modulated contractile proteins associated with the eucaryotic centrosome. Cell Motil Cytoskelet 6(2):193–197. doi:10.1002/cm.970060218

    Article  CAS  Google Scholar 

  92. Baron AT, Greenwood TM, Bazinet CW, Salisbury JL (1992) Centrin is a component of the pericentriolar lattice. Biol Cell 76(3):383–388

    Article  PubMed  CAS  Google Scholar 

  93. Moudjou M, Paintrand M, Vigues B, Bornens M (1991) A human centrosomal protein is immunologically related to basal body-associated proteins from lower eucaryotes and is involved in the nucleation of microtubules. J Cell Biol 115(1):129–140

    Article  PubMed  CAS  Google Scholar 

  94. Ogawa K, Shimizu T (1993) cDNA sequence for mouse caltractin. Biochim Biophys Acta 1216(1):126–128. pii: 0167-4781(93)90048-I

    Google Scholar 

  95. Errabolu R, Sanders MA, Salisbury JL (1994) Cloning of a cDNA encoding human centrin, an EF-hand protein of centrosomes and mitotic spindle poles. J Cell Sci 107(Pt 1):9–16

    PubMed  CAS  Google Scholar 

  96. Lee VD, Huang B (1993) Molecular cloning and centrosomal localization of human caltractin. Proc Natl Acad Sci USA 90(23):11039–11043

    Article  PubMed  CAS  Google Scholar 

  97. Levy YY, Lai EY, Remillard SP, Heintzelman MB, Fulton C (1996) Centrin is a conserved protein that forms diverse associations with centrioles and MTOCs in Naegleria and other organisms. Cell Motil Cytoskelet 33(4):298–323

    Article  CAS  Google Scholar 

  98. Wolfrum U (1992) Cytoskeletal elements in arthropod sensilla and mammalian photoreceptors. Biol Cell 76(3):373–381

    Article  PubMed  CAS  Google Scholar 

  99. Stearns T, Kirschner M (1994) In vitro reconstitution of centrosome assembly and function: the central role of gamma-tubulin. Cell 76(4):623–637. pii: 0092-8674(94)90503-7

    Google Scholar 

  100. Uzawa M, Grams J, Madden B, Toft D, Salisbury JL (1995) Identification of a complex between centrin and heat shock proteins in CSF-arrested Xenopus oocytes and dissociation of the complex following oocyte activation. Dev Biol 171(1):51–59. doi:10.1006/dbio.1995.1259

    Article  PubMed  CAS  Google Scholar 

  101. Paoletti A, Moudjou M, Paintrand M, Salisbury JL, Bornens M (1996) Most of centrin in animal cells is not centrosome-associated and centrosomal centrin is confined to the distal lumen of centrioles. J Cell Sci 109(Pt 13):3089–3102

    PubMed  CAS  Google Scholar 

  102. Spang A, Courtney I, Fackler U, Matzner M, Schiebel E (1993) The calcium-binding protein cell division cycle 31 of Saccharomyces cerevisiae is a component of the half bridge of the spindle pole body. J Cell Biol 123(2):405–416

    Article  PubMed  CAS  Google Scholar 

  103. Paintrand M, Moudjou M, Delacroix H, Bornens M (1992) Centrosome organization and centriole architecture: their sensitivity to divalent cations. J Struct Biol 108(2):107–128

    Article  PubMed  CAS  Google Scholar 

  104. Baron AT, Suman VJ, Nemeth E, Salisbury JL (1994) The pericentriolar lattice of PtK2 cells exhibits temperature and calcium-modulated behavior. J Cell Sci 107(Pt 11):2993–3003

    PubMed  CAS  Google Scholar 

  105. Araki M, Masutani C, Takemura M, Uchida A, Sugasawa K, Kondoh J, Ohkuma Y, Hanaoka F (2001) Centrosome protein centrin 2/caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair. J Biol Chem 276(22):18665–18672

    Article  PubMed  CAS  Google Scholar 

  106. Chen L, Madura K (2008) Centrin/Cdc31 is a novel regulator of protein degradation. Mol Cell Biol 28(5):1829–1840. doi:10.1128/MCB.01256-07

    Article  PubMed  CAS  Google Scholar 

  107. Fischer T, Rodriguez-Navarro S, Pereira G, Racz A, Schiebel E, Hurt E (2004) Yeast centrin Cdc31 is linked to the nuclear mRNA export machinery. Nat Cell Biol 6(9):840–848. doi:10.1038/ncb1163ncb1163

    Article  PubMed  CAS  Google Scholar 

  108. Resendes KK, Rasala BA, Forbes DJ (2008) Centrin 2 localizes to the vertebrate nuclear pore and plays a role in mRNA and protein export. Mol Cell Biol 28(5):1755–1769

    Article  PubMed  CAS  Google Scholar 

  109. Higginbotham H, Bielas S, Tanaka T, Gleeson JG (2004) Transgenic mouse line with green-fluorescent protein-labeled Centrin 2 allows visualization of the centrosome in living cells. Transgenic Res 13(2):155–164

    Article  PubMed  CAS  Google Scholar 

  110. Kuriyama R, Terada Y, Lee KS, Wang CL (2007) Centrosome replication in hydroxyurea-arrested CHO cells expressing GFP-tagged centrin 2. J Cell Sci 120(Pt 14):2444–2453

    Article  PubMed  CAS  Google Scholar 

  111. Piel M, Meyer P, Khodjakov A, Rieder CL, Bornens M (2000) The respective contributions of the mother and daughter centrioles to centrosome activity and behavior in vertebrate cells. J Cell Biol 149(2):317–330

    Article  PubMed  CAS  Google Scholar 

  112. White RA, Pan Z, Salisbury JL (2000) GFP-centrin as a marker for centriole dynamics in living cells. Microsc Res Tech 49(5):451–457

    Article  PubMed  CAS  Google Scholar 

  113. Koblenz B, Schoppmeier J, Grunow A, Lechtreck KF (2003) Centrin deficiency in Chlamydomonas causes defects in basal body replication, segregation and maturation. J Cell Sci 116(Pt 13):2635–2646

    Article  PubMed  CAS  Google Scholar 

  114. Ruiz F, Garreau de Loubresse N, Klotz C, Beisson J, Koll F (2005) Centrin deficiency in Paramecium affects the geometry of basal-body duplication. Curr Biol 15(23):2097–2106

    Article  PubMed  CAS  Google Scholar 

  115. Yang CH, Kasbek C, Majumder S, Yusof AM, Fisk HA (2010) Mps1 phosphorylation sites regulate the function of centrin 2 in centriole assembly. Mol Biol Cell. doi:10.1091/mbc.E10-04-0298

    Google Scholar 

  116. Collins ES, Hornick JE, Durcan TM, Collins NS, Archer W, Karanjeet KB, Vaughan KT, Hinchcliffe EH (2010) Centrosome biogenesis continues in the absence of microtubules during prolonged S-phase arrest. J Cell Physiol. doi:10.1002/jcp.22222

    Google Scholar 

  117. Prosser SL, Straatman KR, Fry AM (2009) Molecular dissection of the centrosome overduplication pathway in S-phase-arrested cells. Mol Cell Biol 29(7):1760–1773

    Article  PubMed  CAS  Google Scholar 

  118. Dantas TJ, Wang Y, Lalor P, Dockery P, Morrison CG (2011) Defective nucleotide excision repair with normal centrosome structures and functions in the absence of all vertebrate centrins. J Cell Biol 193(2):307–318. doi:10.1083/jcb.201012093

    Article  PubMed  CAS  Google Scholar 

  119. Azimzadeh J, Bornens M (2004) The centrosome in evolution. In: Nigg EA (ed) Centrosomes in development and disease. Wiley-VCH, Weinheim, pp 93–122

  120. Hodges ME, Scheumann N, Wickstead B, Langdale JA, Gull K (2010) Reconstructing the evolutionary history of the centriole from protein components. J Cell Sci 123(Pt 9):1407–1413. doi:10.1242/jcs.064873

    Article  PubMed  CAS  Google Scholar 

  121. Middendorp S, Paoletti A, Schiebel E, Bornens M (1997) Identification of a new mammalian centrin gene, more closely related to Saccharomyces cerevisiae CDC31 gene. Proc Natl Acad Sci USA 94(17):9141–9146

    Article  PubMed  CAS  Google Scholar 

  122. Middendorp S, Kuntziger T, Abraham Y, Holmes S, Bordes N, Paintrand M, Paoletti A, Bornens M (2000) A role for centrin 3 in centrosome reproduction. J Cell Biol 148(3):405–416

    Article  PubMed  CAS  Google Scholar 

  123. Gavet O, Alvarez C, Gaspar P, Bornens M (2003) Centrin4p, a novel mammalian centrin specifically expressed in ciliated cells. Mol Biol Cell 14(5):1818–1834

    Article  PubMed  CAS  Google Scholar 

  124. Wolfrum U, Salisbury JL (1998) Expression of centrin isoforms in the mammalian retina. Exp Cell Res 242(1):10–17. doi:10.1006/excr.1998.4038

    Article  PubMed  CAS  Google Scholar 

  125. Hart PE, Glantz JN, Orth JD, Poynter GM, Salisbury JL (1999) Testis-specific murine centrin, Cetn1: genomic characterization and evidence for retroposition of a gene encoding a centrosome protein. Genomics 60(2):111–120. doi:10.1006/geno.1999.5880

    Article  PubMed  CAS  Google Scholar 

  126. Laoukili J, Perret E, Middendorp S, Houcine O, Guennou C, Marano F, Bornens M, Tournier F (2000) Differential expression and cellular distribution of centrin isoforms during human ciliated cell differentiation in vitro. J Cell Sci 113(Pt 8):1355–1364

    PubMed  CAS  Google Scholar 

  127. Veeraraghavan S, Fagan PA, Hu H, Lee V, Harper JF, Huang B, Chazin WJ (2002) Structural independence of the two EF-hand domains of caltractin. J Biol Chem 277(32):28564–28571. doi:10.1074/jbc.M112232200

    Article  PubMed  CAS  Google Scholar 

  128. Thompson JR, Ryan ZC, Salisbury JL, Kumar R (2006) The structure of the human centrin 2-xeroderma pigmentosum group C protein complex. J Biol Chem 281(27):18746–18752

    Article  PubMed  CAS  Google Scholar 

  129. Zhang Y, He CY (2011) Centrins in unicellular organisms: functional diversity and specialization. Protoplasma. doi:10.1007/s00709-011-0305-2

    Google Scholar 

  130. Radu L, Durussel I, Assairi L, Blouquit Y, Miron S, Cox JA, Craescu CT (2010) Scherffelia dubia centrin exhibits a specific mechanism for Ca(2+)-controlled target binding. Biochemistry 49(20):4383–4394. doi:10.1021/bi901764m

    Article  PubMed  CAS  Google Scholar 

  131. Ortiz M, Sanoguet Z, Hu H, Chazin WJ, McMurray CT, Salisbury JL, Pastrana-Rios B (2005) Dynamics of hydrogen-deuterium exchange in Chlamydomonas centrin. Biochemistry 44(7):2409–2418. doi:10.1021/bi0484419

    Article  PubMed  CAS  Google Scholar 

  132. Hu H, Sheehan JH, Chazin WJ (2004) The mode of action of centrin. Binding of Ca2+ and a peptide fragment of Kar1p to the C-terminal domain. J Biol Chem 279(49):50895–50903. doi:10.1074/jbc.M404233200M404233200

    Google Scholar 

  133. Sheehan JH, Bunick CG, Hu H, Fagan PA, Meyn SM, Chazin WJ (2006) Structure of the N-terminal calcium sensor domain of centrin reveals the biochemical basis for domain-specific function. J Biol Chem 281(5):2876–2881. doi:10.1074/jbc.M509886200

    Article  PubMed  CAS  Google Scholar 

  134. Selvapandiyan A, Duncan R, Debrabant A, Bertholet S, Sreenivas G, Negi NS, Salotra P, Nakhasi HL (2001) Expression of a mutant form of Leishmania donovani centrin reduces the growth of the parasite. J Biol Chem 276(46):43253–43261. doi:10.1074/jbc.M106806200

    Article  PubMed  CAS  Google Scholar 

  135. Geier BM, Wiech H, Schiebel E (1996) Binding of centrins and yeast calmodulin to synthetic peptides corresponding to binding sites in the spindle pole body components Kar1p and Spc110p. J Biol Chem 271(45):28366–28374

    Article  PubMed  CAS  Google Scholar 

  136. Durussel I, Blouquit Y, Middendorp S, Craescu CT, Cox JA (2000) Cation- and peptide-binding properties of human centrin 2. FEBS Lett 472(2–3):208–212

    Article  PubMed  CAS  Google Scholar 

  137. Matei E, Miron S, Blouquit Y, Duchambon P, Durussel I, Cox JA, Craescu CT (2003) C-terminal half of human centrin 2 behaves like a regulatory EF-hand domain. Biochemistry 42(6):1439–1450

    Article  PubMed  CAS  Google Scholar 

  138. Yang A, Miron S, Duchambon P, Assairi L, Blouquit Y, Craescu CT (2006) The N-terminal domain of human centrin 2 has a closed structure, binds calcium with a very low affinity, and plays a role in the protein self-assembly. Biochemistry 45(3):880–889. doi:10.1021/bi051397s

    Article  PubMed  CAS  Google Scholar 

  139. Cox JA, Tirone F, Durussel I, Firanescu C, Blouquit Y, Duchambon P, Craescu CT (2005) Calcium and magnesium binding to human centrin 3 and interaction with target peptides. Biochemistry 44(3):840–850. doi:10.1021/bi048294e

    Article  PubMed  CAS  Google Scholar 

  140. Wiech H, Geier BM, Paschke T, Spang A, Grein K, Steinkotter J, Melkonian M, Schiebel E (1996) Characterization of green alga, yeast, and human centrins. Specific subdomain features determine functional diversity. J Biol Chem 271(37):22453–22461

    Article  PubMed  CAS  Google Scholar 

  141. Spang A, Courtney I, Grein K, Matzner M, Schiebel E (1995) The Cdc31p-binding protein Kar1p is a component of the half bridge of the yeast spindle pole body. J Cell Biol 128(5):863–877

    Article  PubMed  CAS  Google Scholar 

  142. Kilmartin JV (2003) Sfi1p has conserved centrin-binding sites and an essential function in budding yeast spindle pole body duplication. J Cell Biol 162(7):1211–1221

    Article  PubMed  CAS  Google Scholar 

  143. Tourbez M, Firanescu C, Yang A, Unipan L, Duchambon P, Blouquit Y, Craescu CT (2004) Calcium-dependent self-assembly of human centrin 2. J Biol Chem 279(46):47672–47680

    Article  PubMed  CAS  Google Scholar 

  144. Li S, Sandercock AM, Conduit P, Robinson CV, Williams RL, Kilmartin JV (2006) Structural role of Sfi1p-centrin filaments in budding yeast spindle pole body duplication. J Cell Biol 173(6):867–877. doi:10.1083/jcb.200603153

    Article  PubMed  CAS  Google Scholar 

  145. Lukasiewicz KB, Greenwood TM, Negron VC, Bruzek AK, Salisbury JL, Lingle WL (2011) Control of centrin stability by Aurora A. PLoS One 6(6):e21291. doi:10.1371/journal.pone.0021291

    Article  PubMed  CAS  Google Scholar 

  146. Lutz W, Lingle WL, McCormick D, Greenwood TM, Salisbury JL (2001) Phosphorylation of centrin during the cell cycle and its role in centriole separation preceding centrosome duplication. J Biol Chem 276(23):20774–20780. doi:10.1074/jbc.M101324200

    Article  PubMed  CAS  Google Scholar 

  147. Trojan P, Krauss N, Choe HW, Giessl A, Pulvermuller A, Wolfrum U (2008) Centrins in retinal photoreceptor cells: regulators in the connecting cilium. Prog Retin Eye Res 27(3):237–259. doi:10.1016/j.preteyeres.2008.01.003

    Article  PubMed  CAS  Google Scholar 

  148. Klein UR, Nigg EA (2009) SUMO-dependent regulation of centrin-2. J Cell Sci 122(Pt 18):3312–3321

    Article  PubMed  CAS  Google Scholar 

  149. Taillon BE, Adler SA, Suhan JP, Jarvik JW (1992) Mutational analysis of centrin: an EF-hand protein associated with three distinct contractile fibers in the basal body apparatus of Chlamydomonas. J Cell Biol 119(6):1613–1624

    Article  PubMed  CAS  Google Scholar 

  150. Schild D, Ananthaswamy HN, Mortimer RK (1981) An endomitotic effect of a cell cycle mutation of Saccharomyces cerevisiae. Genetics 97(3–4):551–562

    PubMed  CAS  Google Scholar 

  151. Biggins S, Rose MD (1994) Direct interaction between yeast spindle pole body components: Kar1p is required for Cdc31p localization to the spindle pole body. J Cell Biol 125(4):843–852

    Article  PubMed  CAS  Google Scholar 

  152. Jaspersen SL, Giddings TH Jr, Winey M (2002) Mps3p is a novel component of the yeast spindle pole body that interacts with the yeast centrin homologue Cdc31p. J Cell Biol 159(6):945–956. doi:10.1083/jcb.200208169

    Article  PubMed  CAS  Google Scholar 

  153. Sullivan DS, Biggins S, Rose MD (1998) The yeast centrin, cdc31p, and the interacting protein kinase, Kic1p, are required for cell integrity. J Cell Biol 143(3):751–765

    Article  PubMed  CAS  Google Scholar 

  154. Baum P, Yip C, Goetsch L, Byers B (1988) A yeast gene essential for regulation of spindle pole duplication. Mol Cell Biol 8(12):5386–5397

    PubMed  CAS  Google Scholar 

  155. Ivanovska I, Rose MD (2001) Fine structure analysis of the yeast centrin, Cdc31p, identifies residues specific for cell morphology and spindle pole body duplication. Genetics 157(2):503–518

    PubMed  CAS  Google Scholar 

  156. Paoletti A, Bordes N, Haddad R, Schwartz CL, Chang F, Bornens M (2003) Fission yeast cdc31p is a component of the half-bridge and controls SPB duplication. Mol Biol Cell 14(7):2793–2808. doi:10.1091/mbc.E02-10-0661

    Article  PubMed  CAS  Google Scholar 

  157. Klink VP, Wolniak SM (2001) Centrin is necessary for the formation of the motile apparatus in spermatids of Marsilea. Mol Biol Cell 12(3):761–776

    PubMed  CAS  Google Scholar 

  158. Tsai CW, Wolniak SM (2001) Cell cycle arrest allows centrin translation but not basal body formation during spermiogenesis in Marsilea. J Cell Sci 114(Pt 23):4265–4272

    PubMed  CAS  Google Scholar 

  159. Selvapandiyan A, Debrabant A, Duncan R, Muller J, Salotra P, Sreenivas G, Salisbury JL, Nakhasi HL (2004) Centrin gene disruption impairs stage-specific basal body duplication and cell cycle progression in Leishmania. J Biol Chem 279(24):25703–25710. doi:10.1074/jbc.M402794200

    Article  PubMed  CAS  Google Scholar 

  160. He CY, Pypaert M, Warren G (2005) Golgi duplication in Trypanosoma brucei requires Centrin 2. Science (New York, NY 310 (5751):1196–1198. doi:10.1126/science.1119969

  161. Selvapandiyan A, Kumar P, Morris JC, Salisbury JL, Wang CC, Nakhasi HL (2007) Centrin1 is required for organelle segregation and cytokinesis in Trypanosoma brucei. Mol Biol Cell 18(9):3290–3301

    Article  PubMed  CAS  Google Scholar 

  162. Shi J, Franklin JB, Yelinek JT, Ebersberger I, Warren G, He CY (2008) Centrin4 coordinates cell and nuclear division in T. brucei. J Cell Sci 121 (Pt 18):3062–3070. doi:10.1242/jcs.030643

  163. Guerra C, Wada Y, Leick V, Bell A, Satir P (2003) Cloning, localization, and axonemal function of Tetrahymena centrin. Mol Biol Cell 14(1):251–261. doi:10.1091/mbc.E02-05-0298

    Article  PubMed  CAS  Google Scholar 

  164. Stemm-Wolf AJ, Morgan G, Giddings TH Jr, White EA, Marchione R, McDonald HB, Winey M (2005) Basal body duplication and maintenance require one member of the Tetrahymena thermophila centrin gene family. Mol Biol Cell 16(8):3606–3619

    Article  PubMed  CAS  Google Scholar 

  165. Kilburn CL, Pearson CG, Romijn EP, Meehl JB, Giddings TH Jr, Culver BP, Yates JR 3rd, Winey M (2007) New Tetrahymena basal body protein components identify basal body domain structure. J Cell Biol 178(6):905–912. doi:10.1083/jcb.200703109

    Article  PubMed  CAS  Google Scholar 

  166. Vonderfecht T, Stemm-Wolf AJ, Hendershott M, Giddings TH Jr, Meehl JB, Winey M (2011) The two domains of centrin have distinct basal body functions in Tetrahymena. Mol Biol Cell 22(13):2221–2234. doi:10.1091/mbc.E11-02-0151

    Article  PubMed  CAS  Google Scholar 

  167. Madeddu L, Klotz C, Le Caer JP, Beisson J (1996) Characterization of centrin genes in Paramecium. Eur J Biochem 238(1):121–128

    Article  PubMed  CAS  Google Scholar 

  168. Gogendeau D, Klotz C, Arnaiz O, Malinowska A, Dadlez M, de Loubresse NG, Ruiz F, Koll F, Beisson J (2008) Functional diversification of centrins and cell morphological complexity. J Cell Sci 121(Pt 1):65–74. doi:10.1242/jcs.019414

    Article  PubMed  CAS  Google Scholar 

  169. Dammermann A, Merdes A (2002) Assembly of centrosomal proteins and microtubule organization depends on PCM-1. J Cell Biol 159(2):255–266

    Article  PubMed  CAS  Google Scholar 

  170. Salisbury JL, Suino KM, Busby R, Springett M (2002) Centrin-2 is required for centriole duplication in mammalian cells. Curr Biol 12(15):1287–1292

    Article  PubMed  CAS  Google Scholar 

  171. Strnad P, Leidel S, Vinogradova T, Euteneuer U, Khodjakov A, Gönczy P (2007) Regulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle. Dev Cell 13(2):203–213. doi:10.1016/j.devcel.2007.07.004

    Google Scholar 

  172. Mikule K, Delaval B, Kaldis P, Jurcyzk A, Hergert P, Doxsey S (2007) Loss of centrosome integrity induces p38-p53-p21-dependent G1-S arrest. Nat Cell Biol 9(2):160–170

    Article  PubMed  CAS  Google Scholar 

  173. Graser S, Stierhof YD, Lavoie SB, Gassner OS, Lamla S, Le Clech M, Nigg EA (2007) Cep164, a novel centriole appendage protein required for primary cilium formation. J Cell Biol 179(2):321–330

    Article  PubMed  CAS  Google Scholar 

  174. Tsang WY, Spektor A, Luciano DJ, Indjeian VB, Chen Z, Salisbury JL, Sanchez I, Dynlacht BD (2006) CP110 cooperates with two calcium-binding proteins to regulate cytokinesis and genome stability. Mol Biol Cell 17(8):3423–3434. doi:10.1091/mbc.E06-04-0371

    Article  PubMed  CAS  Google Scholar 

  175. Delaval B, Covassin L, Lawson ND, Doxsey S (2011) Centrin depletion causes cyst formation and other ciliopathy-related phenotypes in zebrafish. Cell Cycle 10:3964–3972

    Google Scholar 

  176. Wood RD (1996) DNA repair in eukaryotes. Annu Rev Biochem 65:135–167. doi:10.1146/annurev.bi.65.070196.001031

    Article  PubMed  CAS  Google Scholar 

  177. de Laat WL, Jaspers NG, Hoeijmakers JH (1999) Molecular mechanism of nucleotide excision repair. Genes Dev 13(7):768–785

    Article  PubMed  Google Scholar 

  178. Bohr VA, Smith CA, Okumoto DS, Hanawalt PC (1985) DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 40(2):359–369

    Article  PubMed  CAS  Google Scholar 

  179. Mellon I, Spivak G, Hanawalt PC (1987) Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell 51(2):241–249

    Article  PubMed  CAS  Google Scholar 

  180. Selby CP, Sancar A (1993) Molecular mechanism of transcription-repair coupling. Science 260(5104):53–58

    Google Scholar 

  181. Sugasawa K, Ng JM, Masutani C, Iwai S, van der Spek PJ, Eker AP, Hanaoka F, Bootsma D, Hoeijmakers JH (1998) Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell 2(2):223–232

    Article  PubMed  CAS  Google Scholar 

  182. Egly JM (2001) The 14th Datta Lecture. TFIIH: from transcription to clinic. FEBS Lett 498(2–3):124–128

  183. Sugasawa K (2010) Regulation of damage recognition in mammalian global genomic nucleotide excision repair. Mutat Res 685(1–2):29–37. doi:10.1016/j.mrfmmm.2009.08.004

    PubMed  CAS  Google Scholar 

  184. Acu ID, Liu T, Suino-Powell K, Mooney SM, D’Assoro AB, Rowland N, Muotri AR, Correa RG, Niu Y, Kumar R, Salisbury JL (2010) Coordination of centrosome homeostasis and DNA repair is intact in MCF-7 and disrupted in MDA-MB 231 breast cancer cells. Cancer Res 70(8):3320–3328. doi:10.1158/0008-5472.CAN-09-3800

    Article  PubMed  CAS  Google Scholar 

  185. Masutani C, Sugasawa K, Yanagisawa J, Sonoyama T, Ui M, Enomoto T, Takio K, Tanaka K, van der Spek PJ, Bootsma D et al (1994) Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23. EMBO J 13(8):1831–1843

    PubMed  CAS  Google Scholar 

  186. Araujo SJ, Nigg EA, Wood RD (2001) Strong functional interactions of TFIIH with XPC and XPG in human DNA nucleotide excision repair, without a preassembled repairosome. Mol Cell Biol 21(7):2281–2291. doi:10.1128/MCB.21.7.2281-2291.2001

    Article  PubMed  CAS  Google Scholar 

  187. Araki M, Masutani C, Maekawa T, Watanabe Y, Yamada A, Kusumoto R, Sakai D, Sugasawa K, Ohkuma Y, Hanaoka F (2000) Reconstitution of damage DNA excision reaction from SV40 minichromosomes with purified nucleotide excision repair proteins. Mutat Res 459(2):147–160

    Article  PubMed  CAS  Google Scholar 

  188. Popescu A, Miron S, Blouquit Y, Duchambon P, Christova P, Craescu CT (2003) Xeroderma pigmentosum group C protein possesses a high affinity binding site to human centrin 2 and calmodulin. J Biol Chem 278(41):40252–40261

    Article  PubMed  CAS  Google Scholar 

  189. Nishi R, Okuda Y, Watanabe E, Mori T, Iwai S, Masutani C, Sugasawa K, Hanaoka F (2005) Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein. Mol Cell Biol 25(13):5664–5674. doi:10.1128/MCB.25.13.5664-5674.2005

    Article  PubMed  CAS  Google Scholar 

  190. Fong YW, Inouye C, Yamaguchi T, Cattoglio C, Grubisic I, Tjian R (2011) A DNA repair complex functions as an Oct4/Sox2 coactivator in embryonic stem cells. Cell 147(1):120–131. doi:10.1016/j.cell.2011.08.038

    Article  PubMed  CAS  Google Scholar 

  191. den Dulk B, van Eijk P, de Ruijter M, Brandsma JA, Brouwer J (2008) The NER protein Rad33 shows functional homology to human Centrin 2 and is involved in modification of Rad4. DNA Repair (Amst) 7(6):858–868. doi:10.1016/j.dnarep.2008.02.004

    Article  CAS  Google Scholar 

  192. Chen L, Madura K (2002) Rad23 promotes the targeting of proteolytic substrates to the proteasome. Mol Cell Biol 22(13):4902–4913

    Article  PubMed  CAS  Google Scholar 

  193. Rao H, Sastry A (2002) Recognition of specific ubiquitin conjugates is important for the proteolytic functions of the ubiquitin-associated domain proteins Dsk2 and Rad23. J Biol Chem 277(14):11691–11695. doi:10.1074/jbc.M200245200

    Article  PubMed  CAS  Google Scholar 

  194. Ortolan TG, Chen L, Tongaonkar P, Madura K (2004) Rad23 stabilizes Rad4 from degradation by the Ub/proteasome pathway. Nucleic Acids Res 32(22):6490–6500. doi:10.1093/nar/gkh987

    Article  PubMed  CAS  Google Scholar 

  195. Okuda Y, Nishi R, Ng JM, Vermeulen W, van der Horst GT, Mori T, Hoeijmakers JH, Hanaoka F, Sugasawa K (2004) Relative levels of the two mammalian Rad23 homologs determine composition and stability of the xeroderma pigmentosum group C protein complex. DNA Repair (Amst) 3(10):1285–1295. doi:10.1016/j.dnarep.2004.06.010

    Article  CAS  Google Scholar 

  196. Ng JM, Vermeulen W, van der Horst GT, Bergink S, Sugasawa K, Vrieling H, Hoeijmakers JH (2003) A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein. Genes Dev 17(13):1630–1645. doi:10.1101/gad.260003

    Article  PubMed  CAS  Google Scholar 

  197. Charbonnier JB, Renaud E, Miron S, Le Du MH, Blouquit Y, Duchambon P, Christova P, Shosheva A, Rose T, Angulo JF, Craescu CT (2007) Structural, thermodynamic, and cellular characterization of human centrin 2 interaction with xeroderma pigmentosum group C protein. J Mol Biol 373(4):1032–1046. doi:10.1016/j.jmb.2007.08.046

    Article  PubMed  CAS  Google Scholar 

  198. Renaud E, Miccoli L, Zacal N, Biard DS, Craescu CT, Rainbow AJ, Angulo JF (2011) Differential contribution of XPC, RAD23A, RAD23B and CENTRIN 2 to the UV-response in human cells. DNA Repair (Amst) 10(8):835–847. doi:10.1016/j.dnarep.2011.05.003

    Article  CAS  Google Scholar 

  199. Sugasawa K, Okuda Y, Saijo M, Nishi R, Matsuda N, Chu G, Mori T, Iwai S, Tanaka K, Hanaoka F (2005) UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell 121(3):387–400. doi:10.1016/j.cell.2005.02.035

    Article  PubMed  CAS  Google Scholar 

  200. Wang QE, Praetorius-Ibba M, Zhu Q, El-Mahdy MA, Wani G, Zhao Q, Qin S, Patnaik S, Wani AA (2007) Ubiquitylation-independent degradation of Xeroderma pigmentosum group C protein is required for efficient nucleotide excision repair. Nucleic Acids Res 35(16):5338–5350. doi:10.1093/nar/gkm550

    Article  PubMed  CAS  Google Scholar 

  201. Wang QE, Zhu Q, Wani G, El-Mahdy MA, Li J, Wani AA (2005) DNA repair factor XPC is modified by SUMO-1 and ubiquitin following UV irradiation. Nucleic Acids Res 33(13):4023–4034. doi:10.1093/nar/gki684

    Article  PubMed  CAS  Google Scholar 

  202. Liang L, Flury S, Kalck V, Hohn B, Molinier J (2006) CENtrin 2 interacts with the Arabidopsis homolog of the human XPC protein (AtRAD4) and contributes to efficient synthesis-dependent repair of bulky DNA lesions. Plant Mol Biol 61(1–2):345–356. doi:10.1007/s11103-006-0016-9

    Article  PubMed  CAS  Google Scholar 

  203. Molinier J, Ramos C, Fritsch O, Hohn B (2004) CENtrin 2 modulates homologous recombination and nucleotide excision repair in Arabidopsis. Plant Cell 16(6):1633–1643. doi:10.1105/tpc.021378tpc.021378

    Article  PubMed  CAS  Google Scholar 

  204. Weber A, Chung HJ, Springer E, Heitzmann D, Warth R (2010) The TFIIH subunit p89 (XPB) localizes to the centrosome during mitosis. Cell Oncol 32(1–2):121–130. doi:10.3233/CLO-2009-0509

    PubMed  CAS  Google Scholar 

  205. de Boer J, Hoeijmakers JH (1999) Cancer from the outside, aging from the inside: mouse models to study the consequences of defective nucleotide excision repair. Biochimie 81(1–2):127–137

    Article  PubMed  Google Scholar 

  206. Kanai M, Uchida M, Hanai S, Uematsu N, Uchida K, Miwa M (2000) Poly(ADP-ribose) polymerase localizes to the centrosomes and chromosomes. Biochem Biophys Res Commun 278(2):385–389

    Article  PubMed  CAS  Google Scholar 

  207. Augustin A, Spenlehauer C, Dumond H, Menissier-De Murcia J, Piel M, Schmit AC, Apiou F, Vonesch JL, Kock M, Bornens M, De Murcia G (2003) PARP-3 localizes preferentially to the daughter centriole and interferes with the G1/S cell cycle progression. J Cell Sci 116(Pt 8):1551–1562

    Article  PubMed  CAS  Google Scholar 

  208. Smith S, de Lange T (1999) Cell cycle dependent localization of the telomeric PARP, tankyrase, to nuclear pore complexes and centrosomes. J Cell Sci 112(Pt 21):3649–3656

    PubMed  CAS  Google Scholar 

  209. Ohashi S, Kanai M, Hanai S, Uchiumi F, Maruta H, Tanuma S, Miwa M (2003) Subcellular localization of poly(ADP-ribose) glycohydrolase in mammalian cells. Biochem Biophys Res Commun 307(4):915–921

    Article  PubMed  CAS  Google Scholar 

  210. Kanai M, Tong WM, Sugihara E, Wang ZQ, Fukasawa K, Miwa M (2003) Involvement of poly(ADP-Ribose) polymerase 1 and poly(ADP-Ribosyl)ation in regulation of centrosome function. Mol Cell Biol 23(7):2451–2462

    Article  PubMed  CAS  Google Scholar 

  211. Kanai M, Tong WM, Wang ZQ, Miwa M (2007) Haploinsufficiency of poly(ADP-ribose) polymerase-1-mediated poly(ADP-ribosyl)ation for centrosome duplication. Biochem Biophys Res Commun 359(3):426–430. doi:10.1016/j.bbrc.2007.05.108

    Article  PubMed  CAS  Google Scholar 

  212. Okano S, Lan L, Tomkinson AE, Yasui A (2005) Translocation of XRCC1 and DNA ligase IIIalpha from centrosomes to chromosomes in response to DNA damage in mitotic human cells. Nucleic Acids Res 33(1):422–429. doi:10.1093/nar/gki190

    Article  PubMed  CAS  Google Scholar 

  213. Cappelli E, Townsend S, Griffin C, Thacker J (2011) Homologous recombination proteins are associated with centrosomes and are required for mitotic stability. Exp Cell Res 317(8):1203–1213. doi:10.1016/j.yexcr.2011.01.021

    Article  PubMed  CAS  Google Scholar 

  214. Nakanishi A, Han X, Saito H, Taguchi K, Ohta Y, Imajoh-Ohmi S, Miki Y (2007) Interference with BRCA2, which localizes to the centrosome during S and early M phase, leads to abnormal nuclear division. Biochem Biophys Res Commun 355(1):34–40. doi:10.1016/j.bbrc.2007.01.100

    Article  PubMed  CAS  Google Scholar 

  215. Lesca C, Germanier M, Raynaud-Messina B, Pichereaux C, Etievant C, Emond S, Burlet-Schiltz O, Monsarrat B, Wright M, Defais M (2005) DNA damage induce gamma-tubulin-RAD51 nuclear complexes in mammalian cells. Oncogene 24:5165–5172

    Google Scholar 

  216. Sivasubramaniam S, Sun X, Pan YR, Wang S, Lee EY (2008) Cep164 is a mediator protein required for the maintenance of genomic stability through modulation of MDC1, RPA, and CHK1. Genes Dev 22(5):587–600. doi:10.1101/gad.1627708

    Article  PubMed  CAS  Google Scholar 

  217. Pan YR, Lee EY (2009) UV-dependent interaction between Cep164 and XPA mediates localization of Cep164 at sites of DNA damage and UV sensitivity. Cell Cycle 8(4):655–664

    Article  PubMed  CAS  Google Scholar 

  218. Salisbury JL (2004) Centrosomes: Sfi1p and centrin unravel a structural riddle. Curr Biol 14(1):R27–R29

    Article  PubMed  CAS  Google Scholar 

  219. Azimzadeh J, Hergert P, Delouvee A, Euteneuer U, Formstecher E, Khodjakov A, Bornens M (2009) hPOC5 is a centrin-binding protein required for assembly of full-length centrioles. J Cell Biol 185(1):101–114

    Article  PubMed  CAS  Google Scholar 

  220. Alieva IB, Vorobjev IA (2004) Vertebrate primary cilia: a sensory part of centrosomal complex in tissue cells, but a “sleeping beauty” in cultured cells? Cell Biol Int 28(2):139–150. doi:10.1016/j.cellbi.2003.11.013

    Article  PubMed  Google Scholar 

  221. Martinez-Sanz J, Yang A, Blouquit Y, Duchambon P, Assairi L, Craescu CT (2006) Binding of human centrin 2 to the centrosomal protein hSfi1. FEBS J 273(19):4504–4515

    Article  PubMed  CAS  Google Scholar 

  222. Trojan P, Rausch S, Giessl A, Klemm C, Krause E, Pulvermuller A, Wolfrum U (2008) Light-dependent CK2-mediated phosphorylation of centrins regulates complex formation with visual G-protein. Biochim Biophys Acta 1783(6):1248–1260. doi:10.1016/j.bbamcr.2008.01.006

    Article  PubMed  CAS  Google Scholar 

  223. Azimzadeh J, Nacry P, Christodoulidou A, Drevensek S, Camilleri C, Amiour N, Parcy F, Pastuglia M, Bouchez D (2008) Arabidopsis TONNEAU1 proteins are essential for preprophase band formation and interact with centrin. Plant Cell 20(8):2146–2159. doi:10.1105/tpc.107.056812

    Article  PubMed  CAS  Google Scholar 

  224. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127(3):635–648. doi:10.1016/j.cell.2006.09.026

    Article  PubMed  CAS  Google Scholar 

  225. Bernardes de Jesus BM, Bjoras M, Coin F, Egly JM (2008) Dissection of the molecular defects caused by pathogenic mutations in the DNA repair factor XPC. Mol Cell Biol 28(23):7225–7235. doi:10.1128/MCB.00781-08

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

TJD received a predoctoral fellowship from the Fundação para a Ciência e a Tecnologia (Portugal). This work was supported by Science Foundation Ireland Principal Investigator awards 08/IN.1/B1029 and 10/IN.1/B2972.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciaran G. Morrison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dantas, T.J., Daly, O.M. & Morrison, C.G. Such small hands: the roles of centrins/caltractins in the centriole and in genome maintenance. Cell. Mol. Life Sci. 69, 2979–2997 (2012). https://doi.org/10.1007/s00018-012-0961-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-0961-1

Keywords

Navigation